October  2011, 4(5): 957-973. doi: 10.3934/dcdss.2011.4.957

Analysis of supercontinuum generation under general dispersion characteristics and beyond the slowly varying envelope approximation

1. 

Department of Mathematics, Southern Methodist University, Dallas TX 75275, United States, United States, United States

2. 

Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131, United States, United States

Received  August 2009 Revised  January 2010 Published  December 2010

The generation of broadband supercontinua (SC) in air-silica microstructured fibers results from a delicate balance of dispersion and nonlinearity. We analyze two models aimed at better understanding SC. In the first one, we characterize linear dispersion in the Fourier domain from the calculated group velocity dispersion (GVD) without using a Taylor approximation for the propagation constant. Results of our numerical simulations are in good agreement with experiments. A novel relevant length scale, namely the length for shock formation, is introduced and its role is discussed. The second part shows similar dynamics for a model that goes beyond the slowly varying approximation for optical pulse propagation.
Citation: Alejandro B. Aceves, Rondald Chen, Yeojin Chung, Thomas Hagstrom, Michelle Hummel. Analysis of supercontinuum generation under general dispersion characteristics and beyond the slowly varying envelope approximation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 957-973. doi: 10.3934/dcdss.2011.4.957
References:
[1]

G. P. Agrawal, "Nonlinear Fiber Optics,", 3rd edition, (2001). Google Scholar

[2]

R. Alfano, "The Supercontinuum Laser Source,", New York, (1989). Google Scholar

[3]

D. Anderson and M. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides,, Phys. Rev. A, 27 (1983), 1393. doi: doi:10.1103/PhysRevA.27.1393. Google Scholar

[4]

B. Barviau, B. Kibler, S. Coen and A. Picozzi, Toward a thermodynamic description of supercontinuum generation,, Opt. Lett., 33 (2008), 2833. doi: doi:10.1364/OL.33.002833. Google Scholar

[5]

B. Barviau, B. Kibler, A. Kudlinski, A. Mussot, G. Millot and A. Picozzi, Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber,, Opt. Exp., 17 (2009), 7392. doi: doi:10.1364/OE.17.007392. Google Scholar

[6]

B. Barviau, B. Kibler and A. Picozzi, Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher order dispersion,, Phys. Rev. A, 79 (2009). doi: doi:10.1103/PhysRevA.79.063840. Google Scholar

[7]

T. A. Birks, W. J. Wadsworth and P. S. J. Russell, Supercontinuum generation in tapered fibers,, Opt. Lett., 25 (2000), 1415. doi: doi:10.1364/OL.25.001415. Google Scholar

[8]

A. Biswas and A. B. Aceves, Dynamics of solitons in optical fibres,, Journ. of Modern Optics, 48 (2001), 1135. Google Scholar

[9]

Y. Chung and T. Schäfer, Stabilization of ultra-short pulse in cubic nonlinear media,, Phys. Lett. A., 361 (2007), 63. doi: doi:10.1016/j.physleta.2006.08.087. Google Scholar

[10]

J. Dudley and S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,, IEEE J. Sel. Top. Quantum Electron, 8 (2002), 651. doi: doi:10.1109/JSTQE.2002.1016369. Google Scholar

[11]

J. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber,, Rev. of Mod. Phys., 78 (2006), 1135. doi: doi:10.1103/RevModPhys.78.1135. Google Scholar

[12]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen and R. S. Windeler, Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments,, Opt. Exp., 10 (2002), 1215. Google Scholar

[13]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton and S. Coen, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,, JOSA B, 19 (2002), 765. doi: doi:10.1364/JOSAB.19.000765. Google Scholar

[14]

G. Genty, S. Cohen and J. M. Dudley, Fiber supercontinuum sources (Invited),, JOSA B, 24 (2007), 1771. doi: doi:10.1364/JOSAB.24.001771. Google Scholar

[15]

G. Genty, P. Kinsler, B. Kibler and J. M. Dudley, Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,, Opt. Exp., 15 (2007), 5382. doi: doi:10.1364/OE.15.005382. Google Scholar

[16]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,, Opt. Lett., 26 (2001), 608. doi: doi:10.1364/OL.26.000608. Google Scholar

[17]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell and G. Korn, Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,, Phys. Rev. Lett., 88 (2002). doi: doi:10.1103/PhysRevLett.88.173901. Google Scholar

[18]

A. V. Husakou and J. Herrmann, Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,, Phys. Rev. Lett., 87 (2001). doi: doi:10.1103/PhysRevLett.87.203901. Google Scholar

[19]

J. C. Knight, T. A. Birks, D. M. Atkin and P. S. J. Russell, Pure silica single-mode fiber with hexagonal photonic crystal cladding,, in, (1996). Google Scholar

[20]

M. Kolesik and J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,, Phys. Rev. E, 70 (2004). doi: doi:10.1103/PhysRevE.70.036604. Google Scholar

[21]

M. Kolesik, E. M. Wright and J. V. Moloney, Supercontinuum and third-harmonic generation accompanying optical filamentation as first order scattering processes,, Opt. Lett., 342 (2007), 2816. doi: doi:10.1364/OL.32.002816. Google Scholar

[22]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto and A. J. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,, Opt. Exp., 10 (2002), 1520. Google Scholar

[23]

K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar, Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,, Phys. Rev. Lett., 93 (2004). doi: doi:10.1103/PhysRevLett.93.037401. Google Scholar

[24]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly and P. S. J. Russell, Spectrally smooth supercontinuum from 350 nm to 3 $\mu$m in sub-centimeter lengths of soft-glass photonic crystal fibers,, Opt. Exp., 14 (2006), 4928. doi: doi:10.1364/OE.14.004928. Google Scholar

[25]

K. Shi, P. Li, S. Yin and Z. Liu, Chromatic confocal microscopy using supercontinuum light,, Opt. Exp., 12 (2004), 2096. doi: doi:10.1364/OPEX.12.002096. Google Scholar

[26]

K. Shi, F. G. Omenetto and Z. Liu, Supercontinuum generation in an imaging fiber taper,, Opt. Exp., 14 (2006), 12359. doi: doi:10.1364/OE.14.012359. Google Scholar

[27]

J. C. A. Tyrrell, P. Kinsler and G. H. C. New, Pseudospectral spatial-domain: A new method for nonlinear pulse propagation in a few-cycle regime with arbitrary dispersion,, Journ of Mod. Opt., 52 (2005), 973. doi: doi:10.1080/09500340512331334086. Google Scholar

[28]

T. Udem, R. Holzwarth and T. W. Hänsch, Optical frequency metrology,, Nature, 416 (2002), 233. doi: doi:10.1038/416233a. Google Scholar

[29]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T-P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source,, JOSA B, 19 (2002), 2148. Google Scholar

[30]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee and H. H. Chen, Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,, Opt. Lett., 11 (1986), 464. doi: doi:10.1364/OL.11.000464. Google Scholar

[31]

G. B. Whitham, "Linear and Nonlinear Waves,", New York, (1974). Google Scholar

[32]

G. Yang and Y. R. Shen, Spectral broadening of ultrashort pulses in a nonlinear medium,, Opt. Lett., 9 (1984), 510. doi: doi:10.1364/OL.9.000510. Google Scholar

[33]

V. E. Zakharov and A. B. Shabat, Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Sov. Physics JETP, 34 (1972), 62. Google Scholar

show all references

References:
[1]

G. P. Agrawal, "Nonlinear Fiber Optics,", 3rd edition, (2001). Google Scholar

[2]

R. Alfano, "The Supercontinuum Laser Source,", New York, (1989). Google Scholar

[3]

D. Anderson and M. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides,, Phys. Rev. A, 27 (1983), 1393. doi: doi:10.1103/PhysRevA.27.1393. Google Scholar

[4]

B. Barviau, B. Kibler, S. Coen and A. Picozzi, Toward a thermodynamic description of supercontinuum generation,, Opt. Lett., 33 (2008), 2833. doi: doi:10.1364/OL.33.002833. Google Scholar

[5]

B. Barviau, B. Kibler, A. Kudlinski, A. Mussot, G. Millot and A. Picozzi, Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber,, Opt. Exp., 17 (2009), 7392. doi: doi:10.1364/OE.17.007392. Google Scholar

[6]

B. Barviau, B. Kibler and A. Picozzi, Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher order dispersion,, Phys. Rev. A, 79 (2009). doi: doi:10.1103/PhysRevA.79.063840. Google Scholar

[7]

T. A. Birks, W. J. Wadsworth and P. S. J. Russell, Supercontinuum generation in tapered fibers,, Opt. Lett., 25 (2000), 1415. doi: doi:10.1364/OL.25.001415. Google Scholar

[8]

A. Biswas and A. B. Aceves, Dynamics of solitons in optical fibres,, Journ. of Modern Optics, 48 (2001), 1135. Google Scholar

[9]

Y. Chung and T. Schäfer, Stabilization of ultra-short pulse in cubic nonlinear media,, Phys. Lett. A., 361 (2007), 63. doi: doi:10.1016/j.physleta.2006.08.087. Google Scholar

[10]

J. Dudley and S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,, IEEE J. Sel. Top. Quantum Electron, 8 (2002), 651. doi: doi:10.1109/JSTQE.2002.1016369. Google Scholar

[11]

J. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber,, Rev. of Mod. Phys., 78 (2006), 1135. doi: doi:10.1103/RevModPhys.78.1135. Google Scholar

[12]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen and R. S. Windeler, Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments,, Opt. Exp., 10 (2002), 1215. Google Scholar

[13]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton and S. Coen, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,, JOSA B, 19 (2002), 765. doi: doi:10.1364/JOSAB.19.000765. Google Scholar

[14]

G. Genty, S. Cohen and J. M. Dudley, Fiber supercontinuum sources (Invited),, JOSA B, 24 (2007), 1771. doi: doi:10.1364/JOSAB.24.001771. Google Scholar

[15]

G. Genty, P. Kinsler, B. Kibler and J. M. Dudley, Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,, Opt. Exp., 15 (2007), 5382. doi: doi:10.1364/OE.15.005382. Google Scholar

[16]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,, Opt. Lett., 26 (2001), 608. doi: doi:10.1364/OL.26.000608. Google Scholar

[17]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell and G. Korn, Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,, Phys. Rev. Lett., 88 (2002). doi: doi:10.1103/PhysRevLett.88.173901. Google Scholar

[18]

A. V. Husakou and J. Herrmann, Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,, Phys. Rev. Lett., 87 (2001). doi: doi:10.1103/PhysRevLett.87.203901. Google Scholar

[19]

J. C. Knight, T. A. Birks, D. M. Atkin and P. S. J. Russell, Pure silica single-mode fiber with hexagonal photonic crystal cladding,, in, (1996). Google Scholar

[20]

M. Kolesik and J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,, Phys. Rev. E, 70 (2004). doi: doi:10.1103/PhysRevE.70.036604. Google Scholar

[21]

M. Kolesik, E. M. Wright and J. V. Moloney, Supercontinuum and third-harmonic generation accompanying optical filamentation as first order scattering processes,, Opt. Lett., 342 (2007), 2816. doi: doi:10.1364/OL.32.002816. Google Scholar

[22]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto and A. J. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,, Opt. Exp., 10 (2002), 1520. Google Scholar

[23]

K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar, Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,, Phys. Rev. Lett., 93 (2004). doi: doi:10.1103/PhysRevLett.93.037401. Google Scholar

[24]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly and P. S. J. Russell, Spectrally smooth supercontinuum from 350 nm to 3 $\mu$m in sub-centimeter lengths of soft-glass photonic crystal fibers,, Opt. Exp., 14 (2006), 4928. doi: doi:10.1364/OE.14.004928. Google Scholar

[25]

K. Shi, P. Li, S. Yin and Z. Liu, Chromatic confocal microscopy using supercontinuum light,, Opt. Exp., 12 (2004), 2096. doi: doi:10.1364/OPEX.12.002096. Google Scholar

[26]

K. Shi, F. G. Omenetto and Z. Liu, Supercontinuum generation in an imaging fiber taper,, Opt. Exp., 14 (2006), 12359. doi: doi:10.1364/OE.14.012359. Google Scholar

[27]

J. C. A. Tyrrell, P. Kinsler and G. H. C. New, Pseudospectral spatial-domain: A new method for nonlinear pulse propagation in a few-cycle regime with arbitrary dispersion,, Journ of Mod. Opt., 52 (2005), 973. doi: doi:10.1080/09500340512331334086. Google Scholar

[28]

T. Udem, R. Holzwarth and T. W. Hänsch, Optical frequency metrology,, Nature, 416 (2002), 233. doi: doi:10.1038/416233a. Google Scholar

[29]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T-P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source,, JOSA B, 19 (2002), 2148. Google Scholar

[30]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee and H. H. Chen, Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,, Opt. Lett., 11 (1986), 464. doi: doi:10.1364/OL.11.000464. Google Scholar

[31]

G. B. Whitham, "Linear and Nonlinear Waves,", New York, (1974). Google Scholar

[32]

G. Yang and Y. R. Shen, Spectral broadening of ultrashort pulses in a nonlinear medium,, Opt. Lett., 9 (1984), 510. doi: doi:10.1364/OL.9.000510. Google Scholar

[33]

V. E. Zakharov and A. B. Shabat, Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Sov. Physics JETP, 34 (1972), 62. Google Scholar

[1]

Tukur Abdulkadir Sulaiman, Hasan Bulut, Haci Mehmet Baskonus. Optical solitons to the fractional perturbed NLSE in nano-fibers. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 925-936. doi: 10.3934/dcdss.2020054

[2]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[3]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[4]

Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649

[5]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[6]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[7]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[8]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[9]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[10]

Willem M. Schouten-Straatman, Hermen Jan Hupkes. Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5017-5083. doi: 10.3934/dcds.2019205

[11]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[12]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[13]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[14]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[15]

Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1019-1031. doi: 10.3934/dcdss.2011.4.1019

[16]

Vianney Combet. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1961-1993. doi: 10.3934/dcds.2014.34.1961

[17]

Antonio Fasano, Angiolo Farina. Modeling high flux hollow fibers dialyzers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1903-1937. doi: 10.3934/dcdsb.2012.17.1903

[18]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[19]

Wouter Rogiest, Koen De Turck, Koenraad Laevens, Dieter Fiems, Sabine Wittevrongel, Herwig Bruneel. On the optimality of packet-oriented scheduling in photonic switches with delay lines. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 727-747. doi: 10.3934/naco.2011.1.727

[20]

Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]