2011, 4(3): 761-790. doi: 10.3934/dcdss.2011.4.761

Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems

1. 

Université de Toulouse; Université Paul Sabatier Toulouse III, Institut de Mathématiques de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France

Received  April 2009 Revised  December 2009 Published  November 2010

We consider the following class of degenerate/singular parabolic operators:

$Pu=u_t-(x^\a u_x)_x-$λ$ u$/($x^$β) , $x\in (0,1)$,

associated to homogeneous boundary conditions of Dirichlet and/or Neumann type. Under optimal conditions on the parameters $\a\geq 0$, β, λ$ \in \mathbb R$, we derive sharp global Carleman estimates. As an application, we deduce observability and null controllability results for the corresponding evolution problem. A key step in the proof of Carleman estimates is the correct choice of the weight functions and a key ingredient in the proof takes the form of special Hardy-Poincaré inequalities

Citation: Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761
References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, J. Evol. Equ., 6 (2006), 161.

[2]

S. Aniţa and D. Tataru, Null controllability for the dissipative semilinear heat equation,, Appl. Math. Optim., 46 (2002), 97.

[3]

B. Ainseba and S. Aniţa, Local exact controllability of the age-dependent population dynamics with diffusion,, Abstr. Appl. Anal., 6 (2001), 357.

[4]

P. Baras and J. Goldstein, Remarks on the inverse square potential in quantum mechanics,, in, 92 (1984), 31.

[5]

P. Baras and J. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121.

[6]

K. Beauchard and E. Zuazua, Some controllability results for the 2D Kolmogorov equation,, Ann. Institut Henri Poincaré, 26 (2009), 1793.

[7]

J. Bebernes and D. Eberly, "Mathematical Problems from Combustion Theory,", Math. Sci., 83 (1989).

[8]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems,, Rev. Mat. Complut., 10 (1997), 443.

[9]

J.-M. Buchot and J.-P. Raymond, A linearized model for boundary layer equations,, in, 139 (2002), 31.

[10]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,, C. R. Acad. Sci. Paris, 329 (1999), 973.

[11]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability of degenerate parabolic operators with drift,, Netw. Heterog. Media, 2 (2007), 695.

[12]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM J. Control Optim., 47 (2008), 1.

[13]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Commun. Pure Appl. Anal., 3 (2004), 607.

[14]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null Controllability of degenerate heat equations,, Adv. Differential Equations, 10 (2005), 153.

[15]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators,, C. R. Acad. Sci. Paris Sér. I Math., 347 (2009), 147.

[16]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications,, AMS Memoirs, ().

[17]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010).

[18]

P. Cannarsa, D. Rocchetti and J. Vancostenoble, Generation of analytic semi-groups in $L^2$ for a class of second order degenerate elliptic operators,, Control Cybernet., 37 (2008), 831.

[19]

M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval,, Semigroup Forum, 57 (1998), 1.

[20]

S. Chandrasekhar, "An Introduction to the Study of Stellar Structure,", Dover Publ. Inc. New York, (1985).

[21]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Mathématiques et Applications, (1990).

[22]

E. B. Davies, "Spectral Theory and Differential Operators,", Cambridge Studies in Advanced Mathematics, 42 (1995).

[23]

S. Ervedoza, Null Controllability for a singular heat equation: Carleman estimates and Hardy inequalities,, Com. in Partial Diff. Eq., 33 (2008), 1996.

[24]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for the heat operator in half-space,, St. Petersburg Math. J., 15 (2004), 139.

[25]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM: Control, 2 (1997), 87.

[26]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583.

[27]

A. V. Fursikov and O. Yu Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).

[28]

J. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. Amer. Math. Soc., 355 (2003), 197.

[29]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", 2nd ed., (1952).

[30]

I. Lasiecka and R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, non conservative second order hyperbolic equations,, in, 188 (1994), 215.

[31]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. in PDE, 20 (1995), 335.

[32]

P. Martinez, J.-P. Raymond and J. Vancostenoble, Regional null controllability of a Crocco type linearized equation,, SIAM J. Control Optim., 42 (2003), 709.

[33]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, J. Evol. Equ., 6 (2006), 325.

[34]

V. G. Maz'ja, "Sobolev Spaces,", Springer-Verlag, (1985).

[35]

F. Mignot and J.-P. Puel, Solution radiale singulière de $-\Delta u=\lambda e^u$,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 379.

[36]

B. Opic and A. Kufner, "Hardy-Type Inequalities,", Pitman Research Notes in Math., 219 (1990).

[37]

D. Tataru, Carleman estimates and unique continuation near the boundary for P.D.E.'s,, Journal de Maths. Pures et Appliquées, 75 (1996), 367.

[38]

J. Vancostenoble, Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems,, C. R. Acad. Sci. Paris, 348 (2010), 801.

[39]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations,, Comm. in PDE, ().

[40]

J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials,, J. Funct. Anal., 254 (2008), 1864.

[41]

J. Vancostenoble and E. Zuazua, Hardy inequalities, Observability and Control for the wave and Schrödinger equations with singular potentials,, SIAM J. Math. Anal., 41 (2009), 1508.

[42]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.

[43]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations,, Publ. Res. Inst. Math. Sci., 39 (2003), 227.

show all references

References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, J. Evol. Equ., 6 (2006), 161.

[2]

S. Aniţa and D. Tataru, Null controllability for the dissipative semilinear heat equation,, Appl. Math. Optim., 46 (2002), 97.

[3]

B. Ainseba and S. Aniţa, Local exact controllability of the age-dependent population dynamics with diffusion,, Abstr. Appl. Anal., 6 (2001), 357.

[4]

P. Baras and J. Goldstein, Remarks on the inverse square potential in quantum mechanics,, in, 92 (1984), 31.

[5]

P. Baras and J. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121.

[6]

K. Beauchard and E. Zuazua, Some controllability results for the 2D Kolmogorov equation,, Ann. Institut Henri Poincaré, 26 (2009), 1793.

[7]

J. Bebernes and D. Eberly, "Mathematical Problems from Combustion Theory,", Math. Sci., 83 (1989).

[8]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems,, Rev. Mat. Complut., 10 (1997), 443.

[9]

J.-M. Buchot and J.-P. Raymond, A linearized model for boundary layer equations,, in, 139 (2002), 31.

[10]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,, C. R. Acad. Sci. Paris, 329 (1999), 973.

[11]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability of degenerate parabolic operators with drift,, Netw. Heterog. Media, 2 (2007), 695.

[12]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM J. Control Optim., 47 (2008), 1.

[13]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations,, Commun. Pure Appl. Anal., 3 (2004), 607.

[14]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null Controllability of degenerate heat equations,, Adv. Differential Equations, 10 (2005), 153.

[15]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators,, C. R. Acad. Sci. Paris Sér. I Math., 347 (2009), 147.

[16]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications,, AMS Memoirs, ().

[17]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010).

[18]

P. Cannarsa, D. Rocchetti and J. Vancostenoble, Generation of analytic semi-groups in $L^2$ for a class of second order degenerate elliptic operators,, Control Cybernet., 37 (2008), 831.

[19]

M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval,, Semigroup Forum, 57 (1998), 1.

[20]

S. Chandrasekhar, "An Introduction to the Study of Stellar Structure,", Dover Publ. Inc. New York, (1985).

[21]

T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires,, Mathématiques et Applications, (1990).

[22]

E. B. Davies, "Spectral Theory and Differential Operators,", Cambridge Studies in Advanced Mathematics, 42 (1995).

[23]

S. Ervedoza, Null Controllability for a singular heat equation: Carleman estimates and Hardy inequalities,, Com. in Partial Diff. Eq., 33 (2008), 1996.

[24]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for the heat operator in half-space,, St. Petersburg Math. J., 15 (2004), 139.

[25]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM: Control, 2 (1997), 87.

[26]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583.

[27]

A. V. Fursikov and O. Yu Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).

[28]

J. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials,, Trans. Amer. Math. Soc., 355 (2003), 197.

[29]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", 2nd ed., (1952).

[30]

I. Lasiecka and R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, non conservative second order hyperbolic equations,, in, 188 (1994), 215.

[31]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. in PDE, 20 (1995), 335.

[32]

P. Martinez, J.-P. Raymond and J. Vancostenoble, Regional null controllability of a Crocco type linearized equation,, SIAM J. Control Optim., 42 (2003), 709.

[33]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, J. Evol. Equ., 6 (2006), 325.

[34]

V. G. Maz'ja, "Sobolev Spaces,", Springer-Verlag, (1985).

[35]

F. Mignot and J.-P. Puel, Solution radiale singulière de $-\Delta u=\lambda e^u$,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 379.

[36]

B. Opic and A. Kufner, "Hardy-Type Inequalities,", Pitman Research Notes in Math., 219 (1990).

[37]

D. Tataru, Carleman estimates and unique continuation near the boundary for P.D.E.'s,, Journal de Maths. Pures et Appliquées, 75 (1996), 367.

[38]

J. Vancostenoble, Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems,, C. R. Acad. Sci. Paris, 348 (2010), 801.

[39]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations,, Comm. in PDE, ().

[40]

J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials,, J. Funct. Anal., 254 (2008), 1864.

[41]

J. Vancostenoble and E. Zuazua, Hardy inequalities, Observability and Control for the wave and Schrödinger equations with singular potentials,, SIAM J. Math. Anal., 41 (2009), 1508.

[42]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.

[43]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations,, Publ. Res. Inst. Math. Sci., 39 (2003), 227.

[1]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[2]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[3]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[4]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[5]

Abdelhakim Belghazi, Ferroudja Smadhi, Nawel Zaidi, Ouahiba Zair. Carleman inequalities for the two-dimensional heat equation in singular domains. Mathematical Control & Related Fields, 2012, 2 (4) : 331-359. doi: 10.3934/mcrf.2012.2.331

[6]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[7]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[8]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[10]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[11]

Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations & Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020

[12]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[13]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[14]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[15]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[16]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[17]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[18]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control & Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[19]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[20]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]