2011, 4(3): 693-722. doi: 10.3934/dcdss.2011.4.693

Exponential stability of the wave equation with boundary time-varying delay

1. 

Université de Valenciennes et du Hainaut Cambrésis, LAMAV and FR CNRS 2956, Le Mont Houy, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9

2. 

Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila

3. 

Institut Elie Cartan de Nancy, Université Henri Poincaré, B.P. 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  March 2009 Revised  November 2009 Published  November 2010

We consider the wave equation with a time-varying delay term in the boundary condition in a bounded and smooth domain $\Omega\subset\RR^n.$ Under suitable assumptions, we prove exponential stability of the solution. These results are obtained by introducing suitable energies and suitable Lyapunov functionals. Such analysis is also extended to a nonlinear version of the model.
Citation: Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693
References:
[1]

F. Ali Mehmeti, "Nonlinear Waves in Networks,", Mathematical Research, 80 (1994).

[2]

G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.

[4]

M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces,, Israel J. Math., 11 (1972), 57.

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.

[6]

R. Datko, Two examples of ill-posedness with respect to time delays revisited,, IEEE Trans. Automatic Control, 42 (1997), 511.

[7]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.

[8]

L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space,, Israel J. Math., 26 (1977), 1.

[9]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Monographs and Studies in Mathematics, 21 (1985).

[10]

T. Kato, Nonlinear semigroups and evolution equations,, J. Math. Soc. Japan, 19 (1967), 508.

[11]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type,, C.I.M.E., (1976), 125.

[12]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,", Lezioni Fermiane, (1985).

[13]

V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.

[14]

V. Komornik, Exact controllability and stabilization, the multiplier method,, RAM, 36 (1994).

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1980), 33.

[16]

J. Lagnese, Decay of solutions of the wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.

[17]

J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control Optim., 26 (1988), 1250.

[18]

I. Lasiecka and R. Triggiani, Uniform exponential decay of wave equations in a bounded region with $L_2(0,T; L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.

[19]

I. Lasiecka, R. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13.

[20]

C. Y. Lin, Time-dependent nonlinear evolution equations,, Differential Integral Equations, 15 (2002), 257.

[21]

J. L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications. Vol. 1,", Travaux et Recherches Mathématiques, 17 (1968).

[22]

S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell's equations with space-time variable coefficients,, ESAIM Control Optim. Calc. Var., 9 (2003), 563.

[23]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedback,, SIAM J. Control Optim., 45 (2006), 1561.

[24]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.

[25]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, to appear in Discrete Contin. Dyn. Syst. Ser. S., ().

[26]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Math. Sciences, 44 (1983).

[27]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Math. Surveys Monographs, 49 (1997).

[28]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM Control Optim. Calc. Var., 12 (2006), 770.

[29]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.

show all references

References:
[1]

F. Ali Mehmeti, "Nonlinear Waves in Networks,", Mathematical Research, 80 (1994).

[2]

G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.

[4]

M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces,, Israel J. Math., 11 (1972), 57.

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.

[6]

R. Datko, Two examples of ill-posedness with respect to time delays revisited,, IEEE Trans. Automatic Control, 42 (1997), 511.

[7]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.

[8]

L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space,, Israel J. Math., 26 (1977), 1.

[9]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Monographs and Studies in Mathematics, 21 (1985).

[10]

T. Kato, Nonlinear semigroups and evolution equations,, J. Math. Soc. Japan, 19 (1967), 508.

[11]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type,, C.I.M.E., (1976), 125.

[12]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,", Lezioni Fermiane, (1985).

[13]

V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.

[14]

V. Komornik, Exact controllability and stabilization, the multiplier method,, RAM, 36 (1994).

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1980), 33.

[16]

J. Lagnese, Decay of solutions of the wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.

[17]

J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control Optim., 26 (1988), 1250.

[18]

I. Lasiecka and R. Triggiani, Uniform exponential decay of wave equations in a bounded region with $L_2(0,T; L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.

[19]

I. Lasiecka, R. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13.

[20]

C. Y. Lin, Time-dependent nonlinear evolution equations,, Differential Integral Equations, 15 (2002), 257.

[21]

J. L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications. Vol. 1,", Travaux et Recherches Mathématiques, 17 (1968).

[22]

S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell's equations with space-time variable coefficients,, ESAIM Control Optim. Calc. Var., 9 (2003), 563.

[23]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedback,, SIAM J. Control Optim., 45 (2006), 1561.

[24]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.

[25]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, to appear in Discrete Contin. Dyn. Syst. Ser. S., ().

[26]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Math. Sciences, 44 (1983).

[27]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Math. Surveys Monographs, 49 (1997).

[28]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM Control Optim. Calc. Var., 12 (2006), 770.

[29]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.

[1]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[2]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[3]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[4]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[5]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[6]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control & Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[7]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[8]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[9]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[10]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[11]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[12]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

[13]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[14]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018167

[15]

Alberto Bressan, Fabio S. Priuli. Nearly optimal patchy feedbacks. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 687-701. doi: 10.3934/dcds.2008.21.687

[16]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[17]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[18]

Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[19]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[20]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]