# American Institute of Mathematical Sciences

April  2011, 4(2): 483-504. doi: 10.3934/dcdss.2011.4.483

## Stability analysis for phase field systems associated with crystalline-type energies

 1 Department of Mathematics, Department of Mathematics Faculty of Education, Chiba University, 1-33 Yayoichō, Inage, Chiba, 263-8522, Japan

Received  February 2009 Revised  October 2009 Published  November 2010

In this paper, a mathematical model, to represent the dynamics of two-dimensional solid-liquid phase transition, is considered. This mathematical model is formulated as a coupled system of a heat equation with a time-relaxation diffusion, and an Allen-Cahn equation such that the two-dimensional norm, of crystalline-type, is adopted as the mathematical expression of the anisotropy. Through the structural observations for steady-state solutions, some geometric conditions to guarantee their stability will be presented in the main theorem of this paper.
Citation: Ken Shirakawa. Stability analysis for phase field systems associated with crystalline-type energies. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 483-504. doi: 10.3934/dcdss.2011.4.483
##### References:
 [1] L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Science Publications, (2000). Google Scholar [2] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91. Google Scholar [3] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow,, Differential Integral Equations, 14 (2001), 321. Google Scholar [4] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347. doi: 10.1006/jfan.2000.3698. Google Scholar [5] V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff International Publishing, (1976). Google Scholar [6] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets,, Arch. Rat. Mech. Anal., 179 (2006), 109. doi: 10.1007/s00205-005-0387-0. Google Scholar [7] H. Brézis, "Opérateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espace de Hilbert,", North-Holland, (1973). Google Scholar [8] V. Caselles, A. Chambolle, S. Moll and M. Novaga, A characterization of convex calibrable sets in $\mathbbR^N$ with respect to anisotropic norms,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 803. doi: 10.1016/j.anihpc.2008.04.003. Google Scholar [9] L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions",, Studies in Advanced Mathematics, (1992). Google Scholar [10] Y. Giga and P. Rybka, Facet bending in the driven crystalline curvature flow in the plane,, J. Geom. Anal., 18 (2008), 109. doi: 10.1007/s12220-007-9004-9. Google Scholar [11] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics, 80 (1984). Google Scholar [12] T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan J. Indust. Appl. Math., 25 (2008), 233. doi: 10.1007/BF03167521. Google Scholar [13] N. Kenmochi, Systems of nonlinear PDEs arising from dynamical phase transitions,, in, 1584 (1994), 39. Google Scholar [14] N. Kenmochi, Y. Mizuta and T. Nagai, Projections onto convex sets, convex functions and their subdifferentials,, Bull. Fac. Edu., 29 (1980), 11. Google Scholar [15] J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications Vol. I,", Springer-Verlag, (1972). Google Scholar [16] J. S. Moll, The anisotropic total variation flow,, Math. Annalen., 332 (2005), 177. doi: 10.1007/s00208-004-0624-0. Google Scholar [17] M. Novaga and E. Paolini, Stability of crystalline evolutions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1. doi: 10.1142/S0218202505000571. Google Scholar [18] A. Sard, The measure of the critical values of differentiable maps,, Bull. Amer. Math. Soc., 48 (1942), 883. doi: 10.1090/S0002-9904-1942-07811-6. Google Scholar [19] K. Shirakawa, Stability for steady-state solutions of a nonisothermal Allen-Cahn equation generated by a total variation energy,, in, 20 (2004), 289. Google Scholar [20] K. Shirakawa, Large-time behavior for a phase field system associated with total variation energy,, Adv. Math. Sci. Appl., 15 (2005), 1. Google Scholar [21] K. Shirakawa, Stability for steady-state patterns in phase field dynamics associated with total variation energies,, Discrete Contin. Dyn. Syst., 15 (2006), 1215. doi: 10.3934/dcds.2006.15.1215. Google Scholar [22] K. Shirakawa, Stability for phase field systems involving indefinite surface tension coefficients,, in, 71 (2006), 269. Google Scholar [23] K. Shirakawa, Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies,, Discrete Contin. Dyn. Syst. 2009, (2009), 697. Google Scholar [24] K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257. Google Scholar [25] A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996). Google Scholar

show all references

##### References:
 [1] L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Science Publications, (2000). Google Scholar [2] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91. Google Scholar [3] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow,, Differential Integral Equations, 14 (2001), 321. Google Scholar [4] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347. doi: 10.1006/jfan.2000.3698. Google Scholar [5] V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff International Publishing, (1976). Google Scholar [6] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets,, Arch. Rat. Mech. Anal., 179 (2006), 109. doi: 10.1007/s00205-005-0387-0. Google Scholar [7] H. Brézis, "Opérateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espace de Hilbert,", North-Holland, (1973). Google Scholar [8] V. Caselles, A. Chambolle, S. Moll and M. Novaga, A characterization of convex calibrable sets in $\mathbbR^N$ with respect to anisotropic norms,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 803. doi: 10.1016/j.anihpc.2008.04.003. Google Scholar [9] L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions",, Studies in Advanced Mathematics, (1992). Google Scholar [10] Y. Giga and P. Rybka, Facet bending in the driven crystalline curvature flow in the plane,, J. Geom. Anal., 18 (2008), 109. doi: 10.1007/s12220-007-9004-9. Google Scholar [11] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics, 80 (1984). Google Scholar [12] T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan J. Indust. Appl. Math., 25 (2008), 233. doi: 10.1007/BF03167521. Google Scholar [13] N. Kenmochi, Systems of nonlinear PDEs arising from dynamical phase transitions,, in, 1584 (1994), 39. Google Scholar [14] N. Kenmochi, Y. Mizuta and T. Nagai, Projections onto convex sets, convex functions and their subdifferentials,, Bull. Fac. Edu., 29 (1980), 11. Google Scholar [15] J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications Vol. I,", Springer-Verlag, (1972). Google Scholar [16] J. S. Moll, The anisotropic total variation flow,, Math. Annalen., 332 (2005), 177. doi: 10.1007/s00208-004-0624-0. Google Scholar [17] M. Novaga and E. Paolini, Stability of crystalline evolutions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1. doi: 10.1142/S0218202505000571. Google Scholar [18] A. Sard, The measure of the critical values of differentiable maps,, Bull. Amer. Math. Soc., 48 (1942), 883. doi: 10.1090/S0002-9904-1942-07811-6. Google Scholar [19] K. Shirakawa, Stability for steady-state solutions of a nonisothermal Allen-Cahn equation generated by a total variation energy,, in, 20 (2004), 289. Google Scholar [20] K. Shirakawa, Large-time behavior for a phase field system associated with total variation energy,, Adv. Math. Sci. Appl., 15 (2005), 1. Google Scholar [21] K. Shirakawa, Stability for steady-state patterns in phase field dynamics associated with total variation energies,, Discrete Contin. Dyn. Syst., 15 (2006), 1215. doi: 10.3934/dcds.2006.15.1215. Google Scholar [22] K. Shirakawa, Stability for phase field systems involving indefinite surface tension coefficients,, in, 71 (2006), 269. Google Scholar [23] K. Shirakawa, Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies,, Discrete Contin. Dyn. Syst. 2009, (2009), 697. Google Scholar [24] K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257. Google Scholar [25] A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996). Google Scholar
 [1] Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147 [2] Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135 [3] Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373 [4] Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215 [5] Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011 [6] Ken Shirakawa. Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies. Conference Publications, 2009, 2009 (Special) : 697-707. doi: 10.3934/proc.2009.2009.697 [7] Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078 [8] Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775 [9] Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643 [10] Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613 [11] Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691 [12] Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587 [13] Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 [14] Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043 [15] La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981 [16] Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811 [17] Sze-Bi Hsu, Feng-Bin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1479-1501. doi: 10.3934/cpaa.2011.10.1479 [18] Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159 [19] Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209 [20] Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

2018 Impact Factor: 0.545