April  2011, 4(2): 441-466. doi: 10.3934/dcdss.2011.4.441

Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  February 2009 Published  November 2010

In this paper we study a nonlinear thermoviscoelasticity system within the framework of parabolic theory in anisotropic Sobolev spaces with a mixed norm. The application of such a framework allows to generalize the previous results by admitting stronger thermomechanical nonlinearity and a broader class of solution spaces.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137. doi: 10.1070/IM1971v005n05ABEH001213. Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435. doi: 10.1016/0362-546X(82)90058-X. Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9. Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45. Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61. doi: 10.1088/0953-8984/2/1/005. Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364. Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647. doi: 10.1080/03605309708821314. Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1. Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124. Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977). Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551. doi: 10.1002/mma.582. Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407. doi: 10.1002/mma.574. Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201. Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002). doi: 10.4064/dm406-0-1. Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1. Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204. Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189. Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47. doi: 10.1090/S1079-6762-02-00104-X. Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603. Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297. Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007). doi: 10.2748/tmpub.32.1. Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733. doi: 10.1137/060653159. Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093. doi: 10.3934/cpaa.2009.8.1093. Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137. doi: 10.1070/IM1971v005n05ABEH001213. Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435. doi: 10.1016/0362-546X(82)90058-X. Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9. Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45. Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61. doi: 10.1088/0953-8984/2/1/005. Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364. Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647. doi: 10.1080/03605309708821314. Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1. Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124. Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977). Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551. doi: 10.1002/mma.582. Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407. doi: 10.1002/mma.574. Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201. Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002). doi: 10.4064/dm406-0-1. Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1. Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204. Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189. Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47. doi: 10.1090/S1079-6762-02-00104-X. Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603. Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297. Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007). doi: 10.2748/tmpub.32.1. Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733. doi: 10.1137/060653159. Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093. doi: 10.3934/cpaa.2009.8.1093. Google Scholar

[1]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[2]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[3]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[4]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[5]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[6]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[7]

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013

[8]

Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201

[9]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[10]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[11]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[12]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[13]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[14]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[15]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[16]

Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239

[17]

Khalil Ezzinbi, James H. Liu, Nguyen Van Minh. Periodic solutions in fading memory spaces. Conference Publications, 2005, 2005 (Special) : 250-257. doi: 10.3934/proc.2005.2005.250

[18]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

[19]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[20]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]