April  2011, 4(2): 409-421. doi: 10.3934/dcdss.2011.4.409

Variational inequalities for a non-isothermal phase field model

1. 

Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555

2. 

Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555

Received  January 2009 Revised  June 2009 Published  November 2010

We study variational inequalities for a non-isothermal phase field model of the Penrose-Fife type. We consider time-dependent constraints for the order parameter and the Dirichlet boundary condition for the temperature.
Citation: Kota Kumazaki, Masahiro Kubo. Variational inequalities for a non-isothermal phase field model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 409-421. doi: 10.3934/dcdss.2011.4.409
References:
[1]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973). Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar

[3]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429. doi: 10.1098/rspa.1994.0030. Google Scholar

[4]

A. Damlamian and N. Kenmochi, Le problème de Stefan avec conditions latérales variables,, Hiroshima Math. J., 10 (1980), 271. Google Scholar

[5]

A. Ito and M. Kubo, Well-posedness for an extended Penrose-Fife phase field model with energy balance supplied by Dirichlet boundary conditions,, Nonlinear Anal., 9 (2008), 370. doi: 10.1016/j.nonrwa.2006.11.005. Google Scholar

[6]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ. Chiba Univ., 30 (1987), 1. Google Scholar

[7]

N. Kenmochi and M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions,, Adv. Math. Sci. Appl., 9 (1999), 499. Google Scholar

[8]

N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising from phase change problems,, Nonlinear Anal., 22 (1994), 1163. doi: 10.1016/0362-546X(94)90235-6. Google Scholar

[9]

N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles,, Japan J. Appl. Math., 5 (1988), 87. doi: 10.1007/BF03167902. Google Scholar

[10]

M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,, Nonlinear Anal., 63 (2005). doi: 10.1016/j.na.2005.03.029. Google Scholar

[11]

M. Kubo and Q. Lu, Evolution equation for nonlinear degenerate parabolic PDE,, Nonlinear Anal., 64 (2006), 1849. doi: 10.1016/j.na.2005.07.027. Google Scholar

[12]

K. Kumazaki, A. Ito and M. Kubo, A non-isothermal phase separation with constraints and Dirichlet boundary condition for temperature,, Nonlinear Anal., 71 (2009), 1950. doi: 10.1016/j.na.2009.01.039. Google Scholar

[13]

K. Kumazaki, A. Ito and M. Kubo, Generalized solution of a non-isothermal phase separation model,, Discrete Contin. Dyn. Syst. 2009, 2009 (2009), 476. Google Scholar

[14]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 43 (1976), 491. Google Scholar

show all references

References:
[1]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973). Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar

[3]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429. doi: 10.1098/rspa.1994.0030. Google Scholar

[4]

A. Damlamian and N. Kenmochi, Le problème de Stefan avec conditions latérales variables,, Hiroshima Math. J., 10 (1980), 271. Google Scholar

[5]

A. Ito and M. Kubo, Well-posedness for an extended Penrose-Fife phase field model with energy balance supplied by Dirichlet boundary conditions,, Nonlinear Anal., 9 (2008), 370. doi: 10.1016/j.nonrwa.2006.11.005. Google Scholar

[6]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ. Chiba Univ., 30 (1987), 1. Google Scholar

[7]

N. Kenmochi and M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions,, Adv. Math. Sci. Appl., 9 (1999), 499. Google Scholar

[8]

N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising from phase change problems,, Nonlinear Anal., 22 (1994), 1163. doi: 10.1016/0362-546X(94)90235-6. Google Scholar

[9]

N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles,, Japan J. Appl. Math., 5 (1988), 87. doi: 10.1007/BF03167902. Google Scholar

[10]

M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,, Nonlinear Anal., 63 (2005). doi: 10.1016/j.na.2005.03.029. Google Scholar

[11]

M. Kubo and Q. Lu, Evolution equation for nonlinear degenerate parabolic PDE,, Nonlinear Anal., 64 (2006), 1849. doi: 10.1016/j.na.2005.07.027. Google Scholar

[12]

K. Kumazaki, A. Ito and M. Kubo, A non-isothermal phase separation with constraints and Dirichlet boundary condition for temperature,, Nonlinear Anal., 71 (2009), 1950. doi: 10.1016/j.na.2009.01.039. Google Scholar

[13]

K. Kumazaki, A. Ito and M. Kubo, Generalized solution of a non-isothermal phase separation model,, Discrete Contin. Dyn. Syst. 2009, 2009 (2009), 476. Google Scholar

[14]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 43 (1976), 491. Google Scholar

[1]

Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652-661. doi: 10.3934/proc.2005.2005.652

[2]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[3]

Masahiro Kubo, Noriaki Yamazaki. Elliptic-parabolic variational inequalities with time-dependent constraints. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 335-359. doi: 10.3934/dcds.2007.19.335

[4]

Olga Salieva. On nonexistence of solutions to some nonlinear parabolic inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 843-853. doi: 10.3934/cpaa.2017040

[5]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[6]

Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

[7]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[8]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[9]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[10]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

[11]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[12]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[13]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[14]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[15]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[16]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[17]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[18]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[19]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[20]

Benny Avelin, Tuomo Kuusi, Mikko Parviainen. Variational parabolic capacity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5665-5688. doi: 10.3934/dcds.2015.35.5665

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]