April  2011, 4(2): 391-407. doi: 10.3934/dcdss.2011.4.391

Phase separation in a gravity field

1. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic

2. 

WIAS Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano

3. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D–10117 Berlin

Received  May 2009 Revised  August 2009 Published  November 2010

We prove here well-posedness and convergence to equilibria for the solution trajectories associated with a model for solidification of the liquid content of a rigid container in a gravity field. We observe that the gravity effects, which can be neglected without considerable changes of the process on finite time intervals, have a substantial influence on the long time behavior of the evolution system. Without gravity, we find a temperature interval, in which all phase distributions with a prescribed total liquid content are admissible equilibria, while, under the influence of gravity, the only equilibrium distribution in a connected container consists in two pure phases separated by one plane interface perpendicular to the gravity force.
Citation: Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391
References:
[1]

M. Brokate, J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar

[2]

P. Colli, M. Frémond and A Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31. Google Scholar

[3]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63. doi: 10.3934/dcds.2009.25.63. Google Scholar

[4]

M. Frémond, "Non-Smooth Thermo-Mechanics,", Springer-Verlag, (2002). Google Scholar

[5]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559. doi: 10.1142/S0218202506001261. Google Scholar

[6]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609. Google Scholar

[7]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986). Google Scholar

[8]

P. Krejčí, Hysteresis operators-A new approach to evolution differential inequalities,, Comment. Math. Univ. Carolinae, 33 (1989), 525. Google Scholar

[9]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851. doi: 10.1137/09075086X. Google Scholar

[10]

P. Krejčí, Elastoplastic reaction of a container to water freezing,, Mathematica Bohemica, (2010). Google Scholar

[11]

P. Krejčí, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity,, SIAM J. Math. Anal., 34 (2002), 409. doi: 10.1137/S0036141001387604. Google Scholar

[12]

P. Krejčí, J. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions,, Adv. Math. Sci. Appl., 13 (2003), 695. Google Scholar

[13]

E. Rocca and R. Rossi, A nonlinear degenerating PDE system modelling phase transitions in thermoviscoelastic materials,, J. Differential Equations, 245 (2008), 3327. doi: 10.1016/j.jde.2008.02.006. Google Scholar

[14]

E. Rocca and R. Rossi, Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials,, Appl. Math., 53 (2008), 485. doi: 10.1007/s10492-008-0038-5. Google Scholar

[15]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996). Google Scholar

[16]

H. Y. Erbil, "Surface Chemistry of Solid and Liquid Interfaces,", Blackwell Publishing, (2006). Google Scholar

show all references

References:
[1]

M. Brokate, J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar

[2]

P. Colli, M. Frémond and A Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31. Google Scholar

[3]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63. doi: 10.3934/dcds.2009.25.63. Google Scholar

[4]

M. Frémond, "Non-Smooth Thermo-Mechanics,", Springer-Verlag, (2002). Google Scholar

[5]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559. doi: 10.1142/S0218202506001261. Google Scholar

[6]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609. Google Scholar

[7]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986). Google Scholar

[8]

P. Krejčí, Hysteresis operators-A new approach to evolution differential inequalities,, Comment. Math. Univ. Carolinae, 33 (1989), 525. Google Scholar

[9]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851. doi: 10.1137/09075086X. Google Scholar

[10]

P. Krejčí, Elastoplastic reaction of a container to water freezing,, Mathematica Bohemica, (2010). Google Scholar

[11]

P. Krejčí, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity,, SIAM J. Math. Anal., 34 (2002), 409. doi: 10.1137/S0036141001387604. Google Scholar

[12]

P. Krejčí, J. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions,, Adv. Math. Sci. Appl., 13 (2003), 695. Google Scholar

[13]

E. Rocca and R. Rossi, A nonlinear degenerating PDE system modelling phase transitions in thermoviscoelastic materials,, J. Differential Equations, 245 (2008), 3327. doi: 10.1016/j.jde.2008.02.006. Google Scholar

[14]

E. Rocca and R. Rossi, Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials,, Appl. Math., 53 (2008), 485. doi: 10.1007/s10492-008-0038-5. Google Scholar

[15]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996). Google Scholar

[16]

H. Y. Erbil, "Surface Chemistry of Solid and Liquid Interfaces,", Blackwell Publishing, (2006). Google Scholar

[1]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[2]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[3]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[4]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[5]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[6]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[7]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[8]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[9]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[10]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[11]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002

[12]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[13]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[14]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[15]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[16]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[17]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[18]

Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123

[19]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[20]

Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

[Back to Top]