April  2011, 4(2): 371-389. doi: 10.3934/dcdss.2011.4.371

Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes

1. 

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany, Germany

Received  June 2009 Revised  October 2009 Published  November 2010

In this paper we derive thermodynamically consistent higher order phase field models for the dynamics of biomembranes in incompressible viscous fluids. We start with basic conservation laws and an appropriate version of the second law of thermodynamics and obtain generalizations of models introduced by Du, Li and Liu [3] and Jamet and Misbah [11]. In particular we derive a stress tensor involving higher order derivatives of the phase field and generalize the classical Korteweg capillarity tensor.
Citation: M. Hassan Farshbaf-Shaker, Harald Garcke. Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 371-389. doi: 10.3934/dcdss.2011.4.371
References:
[1]

M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.031915. Google Scholar

[2]

T. Biben, K. Kassner and C. Misbah, Phase field approach to three dimensional vesicle dynamics,, Phys. Rev. E, 72 (2005). doi: 10.1103/PhysRevE.72.041921. Google Scholar

[3]

Q. Du, M. Li and C. Liu, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model,, Disc. and Continuous Dyn. Systems. Series B, 8 (2007), 539. doi: 10.3934/dcdsb.2007.8.539. Google Scholar

[4]

Q. Du, C. Liu, R. Ryham and X. Wang, Energetic variational approaches in modeling vesicle and fluid interactions,, Physica D, 238 (2009), 923. doi: 10.1016/j.physd.2009.02.015. Google Scholar

[5]

H. Garcke, B. Niethammer, M. A. Peletier and M. Röger, Mini-workshop: Mathematics of biological membranes. Abstracts from the mini-workshop held September 2008. Organized by H. Garcke, B. Niethammer, M. A. Peletier and M. Röger,, Oberwolfach Reports, 5 (2008), 447. Google Scholar

[6]

H. Garcke and R. Haas, Modelling of non-isothermal multicomponent, multi-phase systems with convection,, in, (2008), 325. doi: 10.1002/9783527624041.ch20. Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics,", Mathematics in Science and Engineering, 158 (2003). Google Scholar

[8]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815. doi: 10.1142/S0218202596000341. Google Scholar

[9]

W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments,, Z. Naturforsch. C, 28 (1973), 693. Google Scholar

[10]

D. Jamet and C. Misbah, Towards a thermodynamically consistent picture of the phase field model of vesicles: Local membrane incompressibility,, Phys. Rev. E, 76 (2007). doi: 10.1103/PhysRevE.76.051907. Google Scholar

[11]

D. Jamet and C. Misbah, Towards a thermodynamically consistent picture of the phase field model of vesicles: Curvature energy,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.031902. Google Scholar

[12]

I. S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle,, Arch. Rat. Mech. Anal., 46 (1972), 131. doi: 10.1007/BF00250688. Google Scholar

[13]

I. S. Liu and I. Müller, On the thermodynamics and thermostatics of fluids in electromagnetic fields,, Arch. Rat. Mech. Anal., 46 (1972), 149. doi: 10.1007/BF00250689. Google Scholar

[14]

J. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.031926. Google Scholar

[15]

L. Modica, The gradient theory of phase transitions and minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[16]

M. Röger and R. Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675. doi: 10.1007/s00209-006-0002-6. Google Scholar

[17]

U. Seifert, Configurations of fluid membranes and vesicles,, Advances in Physics, 46 (1997), 13. doi: 10.1080/00018739700101488. Google Scholar

[18]

C. Truesdell and W. Noll, "The Non-Linear Field Theories of Mechanics,", Springer Verlag, (1992). Google Scholar

show all references

References:
[1]

M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.031915. Google Scholar

[2]

T. Biben, K. Kassner and C. Misbah, Phase field approach to three dimensional vesicle dynamics,, Phys. Rev. E, 72 (2005). doi: 10.1103/PhysRevE.72.041921. Google Scholar

[3]

Q. Du, M. Li and C. Liu, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model,, Disc. and Continuous Dyn. Systems. Series B, 8 (2007), 539. doi: 10.3934/dcdsb.2007.8.539. Google Scholar

[4]

Q. Du, C. Liu, R. Ryham and X. Wang, Energetic variational approaches in modeling vesicle and fluid interactions,, Physica D, 238 (2009), 923. doi: 10.1016/j.physd.2009.02.015. Google Scholar

[5]

H. Garcke, B. Niethammer, M. A. Peletier and M. Röger, Mini-workshop: Mathematics of biological membranes. Abstracts from the mini-workshop held September 2008. Organized by H. Garcke, B. Niethammer, M. A. Peletier and M. Röger,, Oberwolfach Reports, 5 (2008), 447. Google Scholar

[6]

H. Garcke and R. Haas, Modelling of non-isothermal multicomponent, multi-phase systems with convection,, in, (2008), 325. doi: 10.1002/9783527624041.ch20. Google Scholar

[7]

M. E. Gurtin, "An Introduction to Continuum Mechanics,", Mathematics in Science and Engineering, 158 (2003). Google Scholar

[8]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815. doi: 10.1142/S0218202596000341. Google Scholar

[9]

W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments,, Z. Naturforsch. C, 28 (1973), 693. Google Scholar

[10]

D. Jamet and C. Misbah, Towards a thermodynamically consistent picture of the phase field model of vesicles: Local membrane incompressibility,, Phys. Rev. E, 76 (2007). doi: 10.1103/PhysRevE.76.051907. Google Scholar

[11]

D. Jamet and C. Misbah, Towards a thermodynamically consistent picture of the phase field model of vesicles: Curvature energy,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.031902. Google Scholar

[12]

I. S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle,, Arch. Rat. Mech. Anal., 46 (1972), 131. doi: 10.1007/BF00250688. Google Scholar

[13]

I. S. Liu and I. Müller, On the thermodynamics and thermostatics of fluids in electromagnetic fields,, Arch. Rat. Mech. Anal., 46 (1972), 149. doi: 10.1007/BF00250689. Google Scholar

[14]

J. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.031926. Google Scholar

[15]

L. Modica, The gradient theory of phase transitions and minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[16]

M. Röger and R. Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675. doi: 10.1007/s00209-006-0002-6. Google Scholar

[17]

U. Seifert, Configurations of fluid membranes and vesicles,, Advances in Physics, 46 (1997), 13. doi: 10.1080/00018739700101488. Google Scholar

[18]

C. Truesdell and W. Noll, "The Non-Linear Field Theories of Mechanics,", Springer Verlag, (1992). Google Scholar

[1]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[2]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[3]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[4]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[5]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[6]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[7]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[8]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[9]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[10]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[11]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[12]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[13]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[14]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[15]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[16]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[17]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[18]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[19]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[20]

José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]