October  2011, 4(5): 1019-1031. doi: 10.3934/dcdss.2011.4.1019

Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices

1. 

Fakultät für Mathematik, Universität Karlsruhe, Karlsruhe 76128, Germany

2. 

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1

Received  April 2009 Revised  September 2009 Published  December 2010

Using a variational approximation we study discrete solitons of a nonlinear Schrödinger lattice with a cubic-quintic nonlinearity. Using an ansatz with six parameters we are able to approximate bifurcations of asymmetric solutions connecting site-centered and bond-centered solutions and resulting in the exchange of their stability. We show that the numerical and variational approximations are quite close for solitons of small powers.
Citation: Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1019-1031. doi: 10.3934/dcdss.2011.4.1019
References:
[1]

M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede and T. Wagenknecht, Snakes, ladders, and isolas of localised patterns,, SIAM J. Math. Anal., 41 (2009). doi: doi:10.1137/080713306. Google Scholar

[2]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,, Opt. Commun., 219 (2003), 427. doi: doi:10.1016/S0030-4018(03)01341-5. Google Scholar

[3]

R. Carretero-Gonzáles, J. D. Talley, C. Chong and B. A. Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,, Physica D, 216 (2006), 77. doi: doi:10.1016/j.physd.2006.01.022. Google Scholar

[4]

C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126. doi: doi:10.1016/j.physd.2008.10.002. Google Scholar

[5]

D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides,, Opt. Lett., 13 (1988), 794. doi: doi:10.1364/OL.13.000794. Google Scholar

[6]

J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity,, Physica D, 238 (2009), 67. doi: doi:10.1016/j.physd.2008.08.013. Google Scholar

[7]

J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equations-20 years on,, in, (2003), 44. doi: doi:10.1142/9789812704627_0003. Google Scholar

[8]

L. Hadžievski, A. Maluckov, M. Stepić and D. Kip, Power controlled soliton stability and steering in lattices with saturable nonlinearity,, Phys. Rev. Lett., 93 (2004). doi: doi:10.1103/PhysRevLett.93.033901. Google Scholar

[9]

R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu and H. Kuroda, Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm,, J. Opt. A: Pure Appl. Opt., 6 (2004), 282. doi: doi:10.1088/1464-4258/6/2/021. Google Scholar

[10]

D. J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation,, Math. Comput. Simulat., 69 (2005), 322. doi: doi:10.1016/j.matcom.2005.01.015. Google Scholar

[11]

P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833. doi: doi:10.1142/S0217979201007105. Google Scholar

[12]

D. J. B. Lloyd and B. Sandstede, Localized radial solutions of the Swift-Hohenberg equation,, Nonlinearity, 22 (2009), 485. doi: doi:10.1088/0951-7715/22/2/013. Google Scholar

[13]

B. A. Malomed, Variational methods in nonlinear fiber optics and related fields,, Prog. Opt., 43 (2002), 71. Google Scholar

[14]

B. A. Malomed and M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equation,, Phys. Lett. A, 220 (1996), 91. doi: doi:10.1016/0375-9601(96)00516-6. Google Scholar

[15]

A. Maluckov, L. Hadžievski and B. A. Malomed, Dark solitons in dynamical lattices with the cubic-quintic nonlinearity,, Phys. Rev. E, 76 (2007). doi: doi:10.1103/PhysRevE.76.046605. Google Scholar

[16]

A. Maluckov, L. Hadžievski and B. A. Malomed, Staggered and moving localized modes in dynamical lattices with the cubic-quintic nonlinearity,, Phys. Rev. E, 77 (2008). doi: doi:10.1103/PhysRevE.77.036604. Google Scholar

[17]

M. Öster and M. Johansson, Stability, mobility and power currents in a two-dimensional model for waveguide arrays with nonlinear coupling,, Physica D, 238 (2009), 88. doi: doi:10.1016/j.physd.2008.08.006. Google Scholar

[18]

M. Öster, M. Johansson and A. Eriksson, Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability,, Phys. Rev. E, 67 (2003). doi: doi:10.1103/PhysRevE.67.056606. Google Scholar

[19]

I. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Soliton collisions in the discrete nonlinear Schrödinger equation,, Phys. Rev., 68 (2003). Google Scholar

[20]

D. E. Pelinovsky, P. G. Kevrekidis and D. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices,, Physica D, 212 (2005), 1. doi: doi:10.1016/j.physd.2005.07.021. Google Scholar

[21]

C. Taylor and J. H. P. Dawes, Snaking and isolas of localised states in bistable discrete lattices,, Phys. Lett. A, 375 (2010), 4968. doi: doi:10.1016/j.physleta.2010.10.010. Google Scholar

[22]

R. A. Vicencio and M. Johansson, Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity,, Phys. Rev. E, 73 (2006). doi: doi:10.1103/PhysRevE.73.046602. Google Scholar

[23]

C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,, J. Opt. Soc. Am. B, 19 (2002), 369. doi: doi:10.1364/JOSAB.19.000369. Google Scholar

show all references

References:
[1]

M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede and T. Wagenknecht, Snakes, ladders, and isolas of localised patterns,, SIAM J. Math. Anal., 41 (2009). doi: doi:10.1137/080713306. Google Scholar

[2]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,, Opt. Commun., 219 (2003), 427. doi: doi:10.1016/S0030-4018(03)01341-5. Google Scholar

[3]

R. Carretero-Gonzáles, J. D. Talley, C. Chong and B. A. Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,, Physica D, 216 (2006), 77. doi: doi:10.1016/j.physd.2006.01.022. Google Scholar

[4]

C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126. doi: doi:10.1016/j.physd.2008.10.002. Google Scholar

[5]

D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides,, Opt. Lett., 13 (1988), 794. doi: doi:10.1364/OL.13.000794. Google Scholar

[6]

J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity,, Physica D, 238 (2009), 67. doi: doi:10.1016/j.physd.2008.08.013. Google Scholar

[7]

J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equations-20 years on,, in, (2003), 44. doi: doi:10.1142/9789812704627_0003. Google Scholar

[8]

L. Hadžievski, A. Maluckov, M. Stepić and D. Kip, Power controlled soliton stability and steering in lattices with saturable nonlinearity,, Phys. Rev. Lett., 93 (2004). doi: doi:10.1103/PhysRevLett.93.033901. Google Scholar

[9]

R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu and H. Kuroda, Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm,, J. Opt. A: Pure Appl. Opt., 6 (2004), 282. doi: doi:10.1088/1464-4258/6/2/021. Google Scholar

[10]

D. J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation,, Math. Comput. Simulat., 69 (2005), 322. doi: doi:10.1016/j.matcom.2005.01.015. Google Scholar

[11]

P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833. doi: doi:10.1142/S0217979201007105. Google Scholar

[12]

D. J. B. Lloyd and B. Sandstede, Localized radial solutions of the Swift-Hohenberg equation,, Nonlinearity, 22 (2009), 485. doi: doi:10.1088/0951-7715/22/2/013. Google Scholar

[13]

B. A. Malomed, Variational methods in nonlinear fiber optics and related fields,, Prog. Opt., 43 (2002), 71. Google Scholar

[14]

B. A. Malomed and M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equation,, Phys. Lett. A, 220 (1996), 91. doi: doi:10.1016/0375-9601(96)00516-6. Google Scholar

[15]

A. Maluckov, L. Hadžievski and B. A. Malomed, Dark solitons in dynamical lattices with the cubic-quintic nonlinearity,, Phys. Rev. E, 76 (2007). doi: doi:10.1103/PhysRevE.76.046605. Google Scholar

[16]

A. Maluckov, L. Hadžievski and B. A. Malomed, Staggered and moving localized modes in dynamical lattices with the cubic-quintic nonlinearity,, Phys. Rev. E, 77 (2008). doi: doi:10.1103/PhysRevE.77.036604. Google Scholar

[17]

M. Öster and M. Johansson, Stability, mobility and power currents in a two-dimensional model for waveguide arrays with nonlinear coupling,, Physica D, 238 (2009), 88. doi: doi:10.1016/j.physd.2008.08.006. Google Scholar

[18]

M. Öster, M. Johansson and A. Eriksson, Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability,, Phys. Rev. E, 67 (2003). doi: doi:10.1103/PhysRevE.67.056606. Google Scholar

[19]

I. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Soliton collisions in the discrete nonlinear Schrödinger equation,, Phys. Rev., 68 (2003). Google Scholar

[20]

D. E. Pelinovsky, P. G. Kevrekidis and D. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices,, Physica D, 212 (2005), 1. doi: doi:10.1016/j.physd.2005.07.021. Google Scholar

[21]

C. Taylor and J. H. P. Dawes, Snaking and isolas of localised states in bistable discrete lattices,, Phys. Lett. A, 375 (2010), 4968. doi: doi:10.1016/j.physleta.2010.10.010. Google Scholar

[22]

R. A. Vicencio and M. Johansson, Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity,, Phys. Rev. E, 73 (2006). doi: doi:10.1103/PhysRevE.73.046602. Google Scholar

[23]

C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,, J. Opt. Soc. Am. B, 19 (2002), 369. doi: doi:10.1364/JOSAB.19.000369. Google Scholar

[1]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[2]

Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129

[3]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[4]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[5]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[6]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[7]

Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19

[8]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[9]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[10]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[11]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[12]

Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525

[13]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[14]

Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122

[15]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[16]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. A discrete Liouville identity for numerical reconstruction of Schrödinger potentials. Inverse Problems & Imaging, 2017, 11 (4) : 623-641. doi: 10.3934/ipi.2017029

[17]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[18]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[19]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[20]

Vianney Combet. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1961-1993. doi: 10.3934/dcds.2014.34.1961

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]