2009, 2(2): 337-348. doi: 10.3934/dcdss.2009.2.337

Ultrametric logarithm laws I

1. 

Department of Mathematics, Princeton University, Fine Hall, Washington Road Princeton NJ 08544-1000, United States

2. 

Department of Mathematics, The University of Texas at Austin, 1 University Station, C1200 Austin, Texas 78712, United States

3. 

The Institute of Mathematical Sciences, CIT campus, Taramani, Chennai 600 113, India

Received  May 2008 Revised  November 2008 Published  April 2009

We announce ultrametric analogues of the results of Kleinbock-Margulis for shrinking target properties of semisimple group actions on symmetric spaces. The main applications are $S$-arithmetic Diophantine approximation results and logarithm laws for buildings, generalizing the work of Hersonsky-Paulin on trees.
Citation: J. S. Athreya, Anish Ghosh, Amritanshu Prasad. Ultrametric logarithm laws I. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 337-348. doi: 10.3934/dcdss.2009.2.337
[1]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[2]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[3]

Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007

[4]

Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, Ⅱ. Journal of Modern Dynamics, 2017, 11: 1-16. doi: 10.3934/jmd.2017001

[5]

Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, I. Journal of Modern Dynamics, 2009, 3 (3) : 359-378. doi: 10.3934/jmd.2009.3.359

[6]

Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018

[7]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[8]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[9]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[10]

Shaoli Wang, Jianhong Wu, Libin Rong. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences & Engineering, 2017, 14 (3) : 805-820. doi: 10.3934/mbe.2017044

[11]

Claude Elbaz. Gravitational and electromagnetic properties of almost standing fields. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 835-848. doi: 10.3934/dcdsb.2012.17.835

[12]

Francesco Cellarosi, Ilya Vinogradov. Ergodic properties of $k$-free integers in number fields. Journal of Modern Dynamics, 2013, 7 (3) : 461-488. doi: 10.3934/jmd.2013.7.461

[13]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[14]

Patrick Bonckaert, P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 377-400. doi: 10.3934/dcdsb.2008.10.377

[15]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[16]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic & Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[17]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[18]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[19]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[20]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]