2009, 2(2): 287-300. doi: 10.3934/dcdss.2009.2.287

Heaviness in symbolic dynamics: Substitution and Sturmian systems

1. 

Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210, United States

Received  February 2008 Revised  August 2008 Published  April 2009

Heaviness refers to a sequence of partial sums maintaining a certain lower bound and was recently introduced and studied in [11]. After a review of basic properties to familiarize the reader with the ideas of heaviness, general principles of heaviness in symbolic dynamics are introduced. The classical Morse sequence is used to study a specific example of heaviness in a system with nontrivial rational eigenvalues. To contrast, Sturmian sequences are examined, including a new condition for a sequence to be Sturmian.
Citation: David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287
[1]

Michal Kupsa, Štěpán Starosta. On the partitions with Sturmian-like refinements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3483-3501. doi: 10.3934/dcds.2015.35.3483

[2]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[3]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[4]

Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006

[5]

Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173

[6]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[7]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[8]

Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379

[9]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[10]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[11]

Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451

[12]

Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845

[13]

Arnaud Goullet, Shaun Harker, Konstantin Mischaikow, William D. Kalies, Dinesh Kasti. Efficient computation of Lyapunov functions for Morse decompositions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2419-2451. doi: 10.3934/dcdsb.2015.20.2419

[14]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[15]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[16]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[17]

Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975

[18]

Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155

[19]

Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81

[20]

A. Gasull, Víctor Mañosa, Xavier Xarles. Rational periodic sequences for the Lyness recurrence. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 587-604. doi: 10.3934/dcds.2012.32.587

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]