doi: 10.3934/dcdsb.2019211

The fast signal diffusion limit in nonlinear chemotaxis systems

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  November 2018 Revised  May 2019 Published  September 2019

For
$ n\geq2 $
let
$ \mathit{\Omega }\subset {\mathbb{R}}^n $
be a bounded domain with smooth boundary as well as some nonnegative functions
$ 0\not \equiv u_0\in W^{1, \infty}(\mathit{\Omega }) $
and
$ v_0\in W^{1, \infty}(\mathit{\Omega }) $
. With
$ \varepsilon\in(0, 1) $
we want to know in which sense (if any!) solutions to the parabolic-parabolic system
$ \begin{equation*} \begin{cases} u_t = \nabla\cdot((u+1)^{m-1}\nabla u)-\nabla \cdot(u\nabla v) \;\;\; & \text{in} \ \mathit{\Omega }\times\left(0, \infty \right), \\ \varepsilon v_t = \mathit{\Delta } v -v+u & \text{in} \ \mathit{\Omega }\times\left(0, \infty \right), \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{on} \ \partial\mathit{\Omega }\times\left(0, \infty \right), \\ u(\cdot, 0) = u_0, \ v(\cdot, 0) = v_0 & \text{in} \ \mathit{\Omega } \end{cases} \end{equation*} $
converge to those of the system where
$ \varepsilon = 0 $
and where the initial condition for
$ v $
has been removed. We will see in our theorem that indeed the solutions of these systems converge in a meaningful way if
$ m>1+\frac{n-2}{n} $
without the need for further conditions, e. g. on the size of
$ \left\|{{u_0}}\right\|_{L^p(\mathit{\Omega })} $
for some
$ p\in[1, \infty] $
.
Citation: Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019211
References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[2]

M. Freitag, Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems, Journal of Mathematical Analysis and Applications, 463 (2018), 964-988. doi: 10.1016/j.jmaa.2018.03.052. Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0. Google Scholar

[4]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (1997), 633–683. Google Scholar

[5]

W. Jäger and S. Luckhaus, On explosions to solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theoret. Biol., 26 (1970), 399–415 doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI., 1968. Google Scholar

[8]

J. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2d Keller-Segel equations, Mathematics of Computation, 87 (2018), 1165-1189. doi: 10.1090/mcom/3250. Google Scholar

[9]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré, 31 (2014), 851-875. doi: 10.1016/j.anihpc.2013.07.007. Google Scholar

[10]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic KellerSegel system, J. Math. Pures Appl. (9), 100 (2013), 748–767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[11]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. Google Scholar

[13]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497. doi: 10.32917/hmj/1206124609. Google Scholar

[14]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems, Colloq. Math., 111 (2008), 11-34. doi: 10.4064/cm111-1-2. Google Scholar

[15]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Eq., 103 (1993), 146-178. doi: 10.1006/jdeq.1993.1045. Google Scholar

[16]

T. Senba, Type ii blowup of solutions to a simplified Keller-Segel system in two dimensions, Nonlinear Anal., 66 (2007), 1817-1839. doi: 10.1016/j.na.2006.02.027. Google Scholar

[17]

Ph. Souplet and M. Winkler, Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≥ 3, M. Commun. Math. Phys., 367 (2019), 665-681. doi: 10.1007/s00220-018-3238-1. Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9. Google Scholar

[19]

T. Suzuki, Exclusion of boundary blowup for 2d chemotaxis system provided with Dirichlet boundary condition for the poisson part, J. Math. Pures Appl., 100 (2013), 347-367. doi: 10.1016/j.matpur.2013.01.004. Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[21]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Preprint, 2018, arXiv: 1805.05263.Google Scholar

[22]

M. Winkler, Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, preprint.Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system., Journal de Mathématiques Pures et Appliquees, 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9781139171755. Google Scholar

show all references

References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[2]

M. Freitag, Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems, Journal of Mathematical Analysis and Applications, 463 (2018), 964-988. doi: 10.1016/j.jmaa.2018.03.052. Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0. Google Scholar

[4]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (1997), 633–683. Google Scholar

[5]

W. Jäger and S. Luckhaus, On explosions to solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theoret. Biol., 26 (1970), 399–415 doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI., 1968. Google Scholar

[8]

J. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2d Keller-Segel equations, Mathematics of Computation, 87 (2018), 1165-1189. doi: 10.1090/mcom/3250. Google Scholar

[9]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré, 31 (2014), 851-875. doi: 10.1016/j.anihpc.2013.07.007. Google Scholar

[10]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic KellerSegel system, J. Math. Pures Appl. (9), 100 (2013), 748–767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[11]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. Google Scholar

[13]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497. doi: 10.32917/hmj/1206124609. Google Scholar

[14]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems, Colloq. Math., 111 (2008), 11-34. doi: 10.4064/cm111-1-2. Google Scholar

[15]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Eq., 103 (1993), 146-178. doi: 10.1006/jdeq.1993.1045. Google Scholar

[16]

T. Senba, Type ii blowup of solutions to a simplified Keller-Segel system in two dimensions, Nonlinear Anal., 66 (2007), 1817-1839. doi: 10.1016/j.na.2006.02.027. Google Scholar

[17]

Ph. Souplet and M. Winkler, Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≥ 3, M. Commun. Math. Phys., 367 (2019), 665-681. doi: 10.1007/s00220-018-3238-1. Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9. Google Scholar

[19]

T. Suzuki, Exclusion of boundary blowup for 2d chemotaxis system provided with Dirichlet boundary condition for the poisson part, J. Math. Pures Appl., 100 (2013), 347-367. doi: 10.1016/j.matpur.2013.01.004. Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[21]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Preprint, 2018, arXiv: 1805.05263.Google Scholar

[22]

M. Winkler, Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, preprint.Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system., Journal de Mathématiques Pures et Appliquees, 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9781139171755. Google Scholar
[1]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[2]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[3]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[4]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[5]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[6]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[7]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[8]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[9]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[10]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[11]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059

[12]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

[13]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[14]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[15]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[16]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[17]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[18]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[19]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[20]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]