doi: 10.3934/dcdsb.2019043

Distribution of SS and AS and their bifurcations in aggregations of tuna around two FOBs

Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

*Corresponding author: Weinian Zhang

Received  July 2018 Revised  October 2018 Published  February 2019

Fund Project: Supported by NSFC grants #11771307, #11726623 and #11521061 and PCSIRT IRT-15R53

A number of empirical and theoretical studies shows that the exploitation of fish sources has benefitted a lot from artificial floating objects (abbr. FOBs) on the surface of ocean. In this paper we investigate the dynamical distribution in aggregations of tuna around two FOBs. We abandon the effort of precise computation for steady states and eigenvalues but utilize the monotonic intervals to determine the location of zeros and signs of eigenvalues qualitatively and use the symmetry of AS steady states to simplify the system. Our method enables us to find two more steady states than known results and complete the analysis of all steady states effectively. Furthermore, we display all bifurcations at steady states, including six bifurcations of co-dimension 1 and two bifurcations of co-dimension 2. One of bifurcations is a degenerate pitchfork bifurcation of co-dimension 4 but only a part of co-dimension 2 can be unfolded within the system. We construct sectorial regions to prove the nonexistence of closed orbits. Those results provide long-time prediction of steady numbers of tuna around the two FOBs and critical conditions for transitions of cases.

Citation: Shaowen Shi, Weinian Zhang. Distribution of SS and AS and their bifurcations in aggregations of tuna around two FOBs. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019043
References:
[1]

J. M. AméJ. HalloyC. RivaultC. Detrain and J. L. Deneubourg, Collegial decision making based on social amplification leads to optimal group formation, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 5835-5840.

[2]

J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York-Berlin, 1981.

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

[4]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.

[5]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Transactions on Neural Networks, 19 (2008), 782-794. doi: 10.1109/TNN.2007.912321.

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[7]

J. HalloyG. SempoG. CaprariC. RivaultM. AsadpourF. TâcheI. SaïdV. DurierS. CanongeJ. M. AméC. DetrainN. CorrellA. MartinoliF. MondadaR. Siegwart and J. L. Deneubourg, Social integration of robots into groups of cockroaches to control self-organized choices, Science, 318 (2007), 1155-1158. doi: 10.1126/science.1144259.

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Computers and Mathematics with Applications, 43 (2002), 1407-1423. doi: 10.1016/S0898-1221(02)00108-6.

[9]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized brusselator, Mathematical and Computer Modelling, 42 (2005), 167-179. doi: 10.1016/j.mcm.2004.02.041.

[10]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.

[11]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.

[12]

M. RobertL. Dagorn and J. L. Deneubourg, The aggregation of tuna around floating objects: What could be the underlying social mechanisms?, Journal of Theoretical Biology, 359 (2014), 161-170. doi: 10.1016/j.jtbi.2014.06.010.

[13]

D. J. T. Sumpter and S. C. Pratt, Quorum responses and consensus decision making, Philosophical Transaction of the Royal Society B: Biological Sciences, 364 (2009), 743-753. doi: 10.1098/rstb.2008.0204.

[14]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426. doi: 10.1088/0951-7715/17/4/015.

[15]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, volume 101, American Mathematical Society, Providence, 1992.

show all references

References:
[1]

J. M. AméJ. HalloyC. RivaultC. Detrain and J. L. Deneubourg, Collegial decision making based on social amplification leads to optimal group formation, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 5835-5840.

[2]

J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York-Berlin, 1981.

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

[4]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.

[5]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Transactions on Neural Networks, 19 (2008), 782-794. doi: 10.1109/TNN.2007.912321.

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[7]

J. HalloyG. SempoG. CaprariC. RivaultM. AsadpourF. TâcheI. SaïdV. DurierS. CanongeJ. M. AméC. DetrainN. CorrellA. MartinoliF. MondadaR. Siegwart and J. L. Deneubourg, Social integration of robots into groups of cockroaches to control self-organized choices, Science, 318 (2007), 1155-1158. doi: 10.1126/science.1144259.

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Computers and Mathematics with Applications, 43 (2002), 1407-1423. doi: 10.1016/S0898-1221(02)00108-6.

[9]

D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized brusselator, Mathematical and Computer Modelling, 42 (2005), 167-179. doi: 10.1016/j.mcm.2004.02.041.

[10]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.

[11]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.

[12]

M. RobertL. Dagorn and J. L. Deneubourg, The aggregation of tuna around floating objects: What could be the underlying social mechanisms?, Journal of Theoretical Biology, 359 (2014), 161-170. doi: 10.1016/j.jtbi.2014.06.010.

[13]

D. J. T. Sumpter and S. C. Pratt, Quorum responses and consensus decision making, Philosophical Transaction of the Royal Society B: Biological Sciences, 364 (2009), 743-753. doi: 10.1098/rstb.2008.0204.

[14]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426. doi: 10.1088/0951-7715/17/4/015.

[15]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, volume 101, American Mathematical Society, Providence, 1992.

Figure 1.  Parameter regions for qualitative properties. The left comes from [12] and the right from Table 2
Figure 2.  Graph of $P_3$ with $g = 20$ and $\nu = 15$
Figure 3.  Cusp bifurcation at the SS: $ (\sqrt3, \sqrt3) $
Figure 4.  Degenerate pitchfork bifurcation at the SS: $ (1, 1) $
Figure 5.  Bifurcation diagriam of system (67)
Figure 6.  Phase plane of system (7) in (C3)
Figure 7.  Phase plane of system (7) in (C4)
Figure 8.  Phase plane of system (7) in (C5).
Figure 9.  Parameter plane of system (7)
Figure 10.  Phase diagrams of system (7)
Figure 11.  Phase diagrams of system (7)
Figure 12.  Phase diagrams of system (7)
Figure 13.  Phase portraits of system (7)
Figure 14.  Phase portraits of system (7)
Figure 15.  Phase portraits of system (7)
Table 1.  Number and stability of steady states found in [12]
$ g $ $ \nu $ number and stability
$ g<4 $ $ \nu<N_2(g) $ 1 stable SS
$ \nu>N_2(g) $ 1 unstable SS, 2 stable ASs
$ 4<g<16 $ $ \nu<N_1(g) $ 1 stable SS
$ N_1(g)<\nu<N_2(g) $ 1 stable SS, 2 stable ASs and 2 unstable ASs
$ \nu>N_2(g) $ 1 unstable SS, 2 stable ASs
$ g>16 $ $ \nu<N_1(g) $ 1 stable SS
$ N_1(g)<\nu<N_2(g) $ 1 stable SS, 2 stable ASs, 2 unstable ASs
$ N_2(g)<\nu<N_{3}(g) $ 1 unstable SS and 2 stable ASs
$ N_3(g)<\nu<N_{4}(g) $ 3 unstable SSs and 2 stable ASs
$ \nu>N_{4}(g) $ 1 unstable SS and 2 stable ASs
$ g $ $ \nu $ number and stability
$ g<4 $ $ \nu<N_2(g) $ 1 stable SS
$ \nu>N_2(g) $ 1 unstable SS, 2 stable ASs
$ 4<g<16 $ $ \nu<N_1(g) $ 1 stable SS
$ N_1(g)<\nu<N_2(g) $ 1 stable SS, 2 stable ASs and 2 unstable ASs
$ \nu>N_2(g) $ 1 unstable SS, 2 stable ASs
$ g>16 $ $ \nu<N_1(g) $ 1 stable SS
$ N_1(g)<\nu<N_2(g) $ 1 stable SS, 2 stable ASs, 2 unstable ASs
$ N_2(g)<\nu<N_{3}(g) $ 1 unstable SS and 2 stable ASs
$ N_3(g)<\nu<N_{4}(g) $ 3 unstable SSs and 2 stable ASs
$ \nu>N_{4}(g) $ 1 unstable SS and 2 stable ASs
Table 2.  Number of steady states of system (7) and their types
$g$$\nu$number and type$~$total$~\, $
$0<g\leq 4$$0<\nu\leq{g}/{2}+2$1 SS (stable node)1
$\nu>{g}/{2}+2$1 SS (saddle)3
2 ASs (stable nodes)
$4<g<16$$0<\nu<2\sqrt g$1 SS (stable node)1
$\nu=2\sqrt g$1 SS (stable node)3
2 ASs(saddle-nodes)
$2\sqrt g<\nu<{g}/{2}+2$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
$\nu\geq{g}/{2}+2$1 SS (saddle)3
2 ASs (stable nodes)
$g=16$$0<\nu<8$1 SS (stable node)1
$\nu=8$1 SS (stable node)3
2 ASs (saddle-nodes)
$8<\nu<10$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
$\nu\geq 10$1 SS (saddle)3
2 ASs (stable nodes)
$16<g\leq 8+8\sqrt2$$0<\nu<2\sqrt g$1 SS (stable node)1
$\nu=2\sqrt g$1 SS (stable node)3
2 ASs (saddle-nodes)
$2\sqrt g<\nu<{g}/{2}+2$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
${g}/{2}+2\leq \nu<N_1^*(g)$1 SS (saddle)3
2 ASs (stable nodes)
$\nu=N^*_1(g)$1 SS (saddle)4
1 SS (saddle-node)
2 ASs (stable nodes)
$N^*_1(g)<\nu<N^*_2(g)$1 SS (unstable node)5
2 SSs (saddle)
2 ASs (stable nodes)
$\nu=N^*_2(g)$1 SS (saddle-node)4
1 SS (saddle)
2 ASs (stable nodes)
$\nu>N^*_2(g)$1 SS (saddle)3
2 ASs (stable nodes)
$ g>8+8\sqrt2 $ $ 0<\nu<2\sqrt g $ 1 SS (stable node) 1
$ \nu=2\sqrt g $ 1 SS (stable node) 3
2 ASs (saddle-nodes)
$ 2\sqrt g<\nu<N^*_1(g) $ 1 SS (stable node) 5
2 ASs (stable nodes)
2 ASs (saddle)
$ \nu=N^*_1(g) $ 1 SS (stable node) 6
1 SS (saddle-node)
2 ASs (stable nodes)
2 ASs (saddle)
$ N^*_1(g)<\nu<{g}/{2}+2 $ 1 SS (unstable node) 7
1 SS (saddle)
1 SS (stable node)
2 ASs (stable node)
2 ASs (saddle)
$ {g}/{2}+2\leq \nu<N^*_2(g) $ 1 SS (unstable node) 5
2 SSs (saddle)
2 ASs (stable nodes)
$ \nu=N^*_2(g) $ 1 SS (saddle-node) 4
1 SS (saddle)
2 ASs (stable nodes)
$ \nu>N^*_2(g) $ 1 SS (saddle) 3
2 ASs (stable nodes)
$g$$\nu$number and type$~$total$~\, $
$0<g\leq 4$$0<\nu\leq{g}/{2}+2$1 SS (stable node)1
$\nu>{g}/{2}+2$1 SS (saddle)3
2 ASs (stable nodes)
$4<g<16$$0<\nu<2\sqrt g$1 SS (stable node)1
$\nu=2\sqrt g$1 SS (stable node)3
2 ASs(saddle-nodes)
$2\sqrt g<\nu<{g}/{2}+2$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
$\nu\geq{g}/{2}+2$1 SS (saddle)3
2 ASs (stable nodes)
$g=16$$0<\nu<8$1 SS (stable node)1
$\nu=8$1 SS (stable node)3
2 ASs (saddle-nodes)
$8<\nu<10$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
$\nu\geq 10$1 SS (saddle)3
2 ASs (stable nodes)
$16<g\leq 8+8\sqrt2$$0<\nu<2\sqrt g$1 SS (stable node)1
$\nu=2\sqrt g$1 SS (stable node)3
2 ASs (saddle-nodes)
$2\sqrt g<\nu<{g}/{2}+2$1 SS (stable node)5
2 ASs (stable nodes)
2 ASs (saddle)
${g}/{2}+2\leq \nu<N_1^*(g)$1 SS (saddle)3
2 ASs (stable nodes)
$\nu=N^*_1(g)$1 SS (saddle)4
1 SS (saddle-node)
2 ASs (stable nodes)
$N^*_1(g)<\nu<N^*_2(g)$1 SS (unstable node)5
2 SSs (saddle)
2 ASs (stable nodes)
$\nu=N^*_2(g)$1 SS (saddle-node)4
1 SS (saddle)
2 ASs (stable nodes)
$\nu>N^*_2(g)$1 SS (saddle)3
2 ASs (stable nodes)
$ g>8+8\sqrt2 $ $ 0<\nu<2\sqrt g $ 1 SS (stable node) 1
$ \nu=2\sqrt g $ 1 SS (stable node) 3
2 ASs (saddle-nodes)
$ 2\sqrt g<\nu<N^*_1(g) $ 1 SS (stable node) 5
2 ASs (stable nodes)
2 ASs (saddle)
$ \nu=N^*_1(g) $ 1 SS (stable node) 6
1 SS (saddle-node)
2 ASs (stable nodes)
2 ASs (saddle)
$ N^*_1(g)<\nu<{g}/{2}+2 $ 1 SS (unstable node) 7
1 SS (saddle)
1 SS (stable node)
2 ASs (stable node)
2 ASs (saddle)
$ {g}/{2}+2\leq \nu<N^*_2(g) $ 1 SS (unstable node) 5
2 SSs (saddle)
2 ASs (stable nodes)
$ \nu=N^*_2(g) $ 1 SS (saddle-node) 4
1 SS (saddle)
2 ASs (stable nodes)
$ \nu>N^*_2(g) $ 1 SS (saddle) 3
2 ASs (stable nodes)
Table 3.  Nonhyperbolic cases, where $ s_\pm $ and $ x_*^\pm $ are defined in (13) and (35)
Label $ g $, $ \nu $ degenerate steady-states and coordinates
NH1 $ g>16 $, $ \nu=N_1^*(g) $ 1 SS(saddle-node) $ (s_+, s_+) $
NH2 $ g>16 $, $ \nu=N_2^*(g) $ 1 SS(saddle-node) $ (s_-, s_-) $
NH3 $ g=16 $, $ \nu=6\sqrt3 $ 1 SS(saddle) $ (\sqrt3, \sqrt3) $
NH4 $ g>4 $, $ \nu=N_1(g) $ 2 ASs(saddle-nodes) $ (x_*^+, x_*^-) $ and $ (x_*^-, x_*^+) $
NH5 $ g>4 $, $ \nu=N_2(g) $ 1 SS(saddle) $ (1, 1) $
$ 0<g<4 $, $ \nu=N_2(g) $ 1 SS(stable node) $ (1, 1) $
NH6 $ g=4 $, $ \nu=4 $ 1 SS(stable node) $ (1, 1) $
Label $ g $, $ \nu $ degenerate steady-states and coordinates
NH1 $ g>16 $, $ \nu=N_1^*(g) $ 1 SS(saddle-node) $ (s_+, s_+) $
NH2 $ g>16 $, $ \nu=N_2^*(g) $ 1 SS(saddle-node) $ (s_-, s_-) $
NH3 $ g=16 $, $ \nu=6\sqrt3 $ 1 SS(saddle) $ (\sqrt3, \sqrt3) $
NH4 $ g>4 $, $ \nu=N_1(g) $ 2 ASs(saddle-nodes) $ (x_*^+, x_*^-) $ and $ (x_*^-, x_*^+) $
NH5 $ g>4 $, $ \nu=N_2(g) $ 1 SS(saddle) $ (1, 1) $
$ 0<g<4 $, $ \nu=N_2(g) $ 1 SS(stable node) $ (1, 1) $
NH6 $ g=4 $, $ \nu=4 $ 1 SS(stable node) $ (1, 1) $
[1]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[2]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[3]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[4]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[5]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[6]

Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112

[7]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[8]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[9]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[10]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[11]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[12]

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic & Related Models, 2011, 4 (3) : 809-829. doi: 10.3934/krm.2011.4.809

[13]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[14]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

[15]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[16]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[17]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[18]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[19]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[20]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (14)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]