• Previous Article
    On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials
  • DCDS-B Home
  • This Issue
  • Next Article
    An optimal control problem for some nonlinear elliptic equations with unbounded coefficients
March 2019, 24(3): 1367-1391. doi: 10.3934/dcdsb.2019020

Asymptotic behavior of the stochastic Keller-Segel equations

1. 

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China

2. 

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA

3. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author

Received  December 2017 Revised  March 2018 Published  January 2019

Fund Project: The second author was supported by NSF (DMS-1446139), NIH (U54CA132383) and NNSF of China (No.11371048)

This paper deals with the asymptotic behavior of the solutions of the non-autonomous one-dimensional stochastic Keller-Segel equations defined in a bounded interval with Neumann boundary conditions. We prove the existence and uniqueness of tempered pullback random attractors under certain conditions. We also establish the convergence of the solutions as well as the pullback random attractors of the stochastic equations as the intensity of noise approaches zero.

Citation: Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.

[4]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011), 446-469. doi: 10.1080/03605302.2010.523919.

[5]

T. CaraballoM. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443. doi: 10.3934/dcds.2008.21.415.

[6]

T. CaraballoJ. Real and I. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539. doi: 10.3934/dcdsb.2008.9.525.

[7]

T. Caraballo and J. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513.

[8]

T. CaraballoM. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.

[9]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047.

[10]

T. CaraballoJ. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[11]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144. doi: 10.1080/1468936042000207792.

[12]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[14]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151. doi: 10.4310/CMS.2003.v1.n1.a9.

[15]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[16]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[17]

M. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5.

[18]

M. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388. doi: 10.1142/S0219493711003358.

[19]

M. Garrido-AtienzaB. Maslowski and B. Schmalfuss, Random attractors for stochastic equations driven by a fractional Brownian motion, International J. Bifurcation and Chaos, 20 (2010), 2761-2782. doi: 10.1142/S0218127410027349.

[20]

B. GessW. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013.

[21]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Diff. Eqns., 25 (2013), 121-157. doi: 10.1007/s10884-013-9294-5.

[22]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.

[23]

M. A. Herrero and J. J. L. Velazquez, A blow-up mechanism for a chemotaxis model, Ann. Scoula. Norm. Sup. Pisa IV, 24 (1997), 633-683.

[24]

D. Horstmann and G. Wang, Blowup in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[25]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855.

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415.

[27]

P. E. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A., 463 (2007), 163–181. doi: 10.1098/rspa.2006.1753.

[28]

I. R. Lapidus and M. Levandowsky, Modeling chemosensory responses of swimming eukaryotes, biological growth and spread, Lecture Notes in Biomathematics, 38 (1980), 388-396.

[29]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.

[30]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

[31]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497. doi: 10.32917/hmj/1206124609.

[32]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.

[33]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, TMA, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[34]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556. doi: 10.1090/S0002-9947-1985-0808736-1.

[35]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.

[36]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537. doi: 10.1016/j.jde.2008.10.012.

[37]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R} ^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.

[38]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.

[39]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.

[40]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269.

[41]

A. Yagi, Norm behavior of solutions to the parabolic system of chemotaxis, Math. Japonica, 45 (1997), 241-265.

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.

[4]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011), 446-469. doi: 10.1080/03605302.2010.523919.

[5]

T. CaraballoM. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443. doi: 10.3934/dcds.2008.21.415.

[6]

T. CaraballoJ. Real and I. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539. doi: 10.3934/dcdsb.2008.9.525.

[7]

T. Caraballo and J. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513.

[8]

T. CaraballoM. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.

[9]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047.

[10]

T. CaraballoJ. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[11]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144. doi: 10.1080/1468936042000207792.

[12]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[14]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151. doi: 10.4310/CMS.2003.v1.n1.a9.

[15]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[16]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[17]

M. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5.

[18]

M. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388. doi: 10.1142/S0219493711003358.

[19]

M. Garrido-AtienzaB. Maslowski and B. Schmalfuss, Random attractors for stochastic equations driven by a fractional Brownian motion, International J. Bifurcation and Chaos, 20 (2010), 2761-2782. doi: 10.1142/S0218127410027349.

[20]

B. GessW. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013.

[21]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Diff. Eqns., 25 (2013), 121-157. doi: 10.1007/s10884-013-9294-5.

[22]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.

[23]

M. A. Herrero and J. J. L. Velazquez, A blow-up mechanism for a chemotaxis model, Ann. Scoula. Norm. Sup. Pisa IV, 24 (1997), 633-683.

[24]

D. Horstmann and G. Wang, Blowup in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[25]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855.

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415.

[27]

P. E. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A., 463 (2007), 163–181. doi: 10.1098/rspa.2006.1753.

[28]

I. R. Lapidus and M. Levandowsky, Modeling chemosensory responses of swimming eukaryotes, biological growth and spread, Lecture Notes in Biomathematics, 38 (1980), 388-396.

[29]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.

[30]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

[31]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497. doi: 10.32917/hmj/1206124609.

[32]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.

[33]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, TMA, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[34]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556. doi: 10.1090/S0002-9947-1985-0808736-1.

[35]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.

[36]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537. doi: 10.1016/j.jde.2008.10.012.

[37]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R} ^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.

[38]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.

[39]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.

[40]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269.

[41]

A. Yagi, Norm behavior of solutions to the parabolic system of chemotaxis, Math. Japonica, 45 (1997), 241-265.

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[3]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

[4]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019029

[5]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[6]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[7]

Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107

[8]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[9]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[10]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[11]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[12]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[13]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[14]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[15]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[16]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[17]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

[18]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[19]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[20]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (96)
  • HTML views (84)
  • Cited by (0)

Other articles
by authors

[Back to Top]