March 2019, 24(3): 1079-1093. doi: 10.3934/dcdsb.2019007

Some remarks on an environmental defensive expenditures model

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

2. 

Departament of Engineering, University Niccolò Cusano, Via Don Carlo Gnocchi, 3 00166, Roma, Italy

3. 

Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121, Ancona (AN), Italy

Received  April 2017 Revised  October 2017 Published  January 2019

Fund Project: This work has been partially supported by FEDER and the Spanish Ministerio de Economía y Competitividad project MTM2015-63723-P and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492

In this paper, we consider the environmental defensive expenditures model with delay proposed by Russu in [16] and obtain different results about stability of equilibria in the case of absence of delay. Moreover we provide a more detailed analysis of the stability for equilibria and Hopf bifurcation in the case with delay. Finally, we discuss possible modifications of the model in order to make it more accurate and realistic.

Citation: Tomás Caraballo, Renato Colucci, Luca Guerrini. Some remarks on an environmental defensive expenditures model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1079-1093. doi: 10.3934/dcdsb.2019007
References:
[1]

A. AntociS. Borghesi and P. Russu, Environmental defensive expenditures, expectations and growth, Population and Environment, 27 (2005), 227-244. doi: 10.1007/s11111-006-0019-0.

[2]

R. Becker, Intergenerational equity: The capital-environment trade-off, J. Environ. Econ. Manage., 9 (1982), 165-185. doi: 10.1016/0095-0696(82)90020-1.

[3]

T. CaraballoJ. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145. doi: 10.1016/j.jmaa.2007.01.038.

[4]

T. CaraballoX. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199. doi: 10.1137/14099930X.

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[6]

G. Cazzavillan and I. Musu, Transitional dynamics and uniqueness of the balanced-growth path in a simple model of endogenous growth with an environmental asset, FEEM Working Paper, 2001 (2001), Paper No 65, 12pp. doi: 10.2139/ssrn.286694.

[7]

M. Dell'Era and M. Sodini, Closed form solution for dynamic of sustainable tourism., University Library of Munich, Germany, 2009.

[8]

P. F. J. Eagles, S. F. McCool and C. D. Haynes, Sustainable Tourism in Protected Areas. United Nations Environment Programme, World Tourism Organization and IUCN, The World Conservation Union, 2002.

[9]

M. Ferrara, Green economy, sustainable growth theory and demographic dynamics: a modern theoretical approach, Proceedings of the 3rd International Conference on Applied Mathematics, Simulation, Modelling, Circuits, Systems and Signals, pages, 11-12, 2009. World Scientific and Engineering Academy and Society (WSEAS).

[10]

M. Ferrara and L. Guerrini, Economic development and sustainability in a two-sector model with variable population growth rate, Journal of Mathematical Sciences: Advances and Applications, 1 (2008), 323-339.

[11]

J. K. Hale and S. V. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

B. Hassard, D. Kazarino and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[14]

V. Kolmanovskii and L. Shaikhet, General method of Lyapunov functionals construction for stability investigation of stochastic difference equations, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., World Sci. Publ., River Edge, NJ, 4 (1995), 397-439. doi: 10.1142/9789812796417_0026.

[15]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.

[16]

P. Russu, Hopf bifurcation in a environmental defensive expenditures model with time delay, Chaos, Solitons and Fractals, 42 (2009), 3147-3159. doi: 10.1016/j.chaos.2009.04.021.

[17]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, No. 33. Van Nostrand Reinhold Co., London, 1971.

show all references

References:
[1]

A. AntociS. Borghesi and P. Russu, Environmental defensive expenditures, expectations and growth, Population and Environment, 27 (2005), 227-244. doi: 10.1007/s11111-006-0019-0.

[2]

R. Becker, Intergenerational equity: The capital-environment trade-off, J. Environ. Econ. Manage., 9 (1982), 165-185. doi: 10.1016/0095-0696(82)90020-1.

[3]

T. CaraballoJ. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145. doi: 10.1016/j.jmaa.2007.01.038.

[4]

T. CaraballoX. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199. doi: 10.1137/14099930X.

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[6]

G. Cazzavillan and I. Musu, Transitional dynamics and uniqueness of the balanced-growth path in a simple model of endogenous growth with an environmental asset, FEEM Working Paper, 2001 (2001), Paper No 65, 12pp. doi: 10.2139/ssrn.286694.

[7]

M. Dell'Era and M. Sodini, Closed form solution for dynamic of sustainable tourism., University Library of Munich, Germany, 2009.

[8]

P. F. J. Eagles, S. F. McCool and C. D. Haynes, Sustainable Tourism in Protected Areas. United Nations Environment Programme, World Tourism Organization and IUCN, The World Conservation Union, 2002.

[9]

M. Ferrara, Green economy, sustainable growth theory and demographic dynamics: a modern theoretical approach, Proceedings of the 3rd International Conference on Applied Mathematics, Simulation, Modelling, Circuits, Systems and Signals, pages, 11-12, 2009. World Scientific and Engineering Academy and Society (WSEAS).

[10]

M. Ferrara and L. Guerrini, Economic development and sustainability in a two-sector model with variable population growth rate, Journal of Mathematical Sciences: Advances and Applications, 1 (2008), 323-339.

[11]

J. K. Hale and S. V. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

B. Hassard, D. Kazarino and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[14]

V. Kolmanovskii and L. Shaikhet, General method of Lyapunov functionals construction for stability investigation of stochastic difference equations, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., World Sci. Publ., River Edge, NJ, 4 (1995), 397-439. doi: 10.1142/9789812796417_0026.

[15]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.

[16]

P. Russu, Hopf bifurcation in a environmental defensive expenditures model with time delay, Chaos, Solitons and Fractals, 42 (2009), 3147-3159. doi: 10.1016/j.chaos.2009.04.021.

[17]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, No. 33. Van Nostrand Reinhold Co., London, 1971.

Figure 1.  Figure of experiment 1: the fixed point is not stable, the solution diverges
Figure 2.  Figures for Experiment 2: stable limit cycle.
Figure 3.  Stability of the fixed point for $ r<\delta $.
Figure 4.  The solution of the system with delay and for $ \tau = 8.6 $ and $ \tau = 9.8 $ respectively.
Figure 5.  The solution of the system with delay and for $ \tau = 2.1, 2.3,117,121 $.
Figure 6.  There exists a positive stable fixed point and the second component of the solution takes negative values.
[1]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[2]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[3]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[4]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[5]

Roman Srzednicki. A theorem on chaotic dynamics and its application to differential delay equations. Conference Publications, 2001, 2001 (Special) : 362-365. doi: 10.3934/proc.2001.2001.362

[6]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[7]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[8]

Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697

[9]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[10]

Evelyn Sander, E. Barreto, S.J. Schiff, P. So. Dynamics of noninvertibility in delay equations. Conference Publications, 2005, 2005 (Special) : 768-777. doi: 10.3934/proc.2005.2005.768

[11]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[12]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[13]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[14]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[15]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[16]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[17]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[18]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[19]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[20]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018268

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (37)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]