• Previous Article
    Pollution control for switching diffusion models: Approximation methods and numerical results
  • DCDS-B Home
  • This Issue
  • Next Article
    Oscillations and asymptotic convergence for a delay differential equation modeling platelet production
doi: 10.3934/dcdsb.2018340

Regularity of solutions to time fractional diffusion equations

School of Mathematics, Sichuan University, Chengdu 610064, China

* Corresponding author: Xiaoping Xie, xpxie@scu.edu.cn

Received  June 2017 Revised  December 2017 Published  January 2019

Fund Project: This work was supported by National Natural Science Foundation of China (11771312) and Major Research Plan of National Natural Science Foundation of China (91430105)

We derive some regularity estimates of the solution to a time fractional diffusion equation by using the Galerkin method. The regularity estimates partially unravel the singularity structure of the solution with respect to the time variable. We show that the regularity of the weak solution can be improved by subtracting some particular forms of singular functions.

Citation: Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018340
References:
[1]

O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155. doi: 10.1023/A:1016539022492.

[2]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255. doi: 10.1016/j.jde.2003.12.002.

[3]

A. M. A. El-Sayed, Frartiorial order tliffusion-wave equation, International Journal of Theoretical Physics, 35 (1996), 311-322. doi: 10.1007/BF02083817.

[4]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations, 22 (2006), 558-576. doi: 10.1002/num.20112.

[5]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 1998.

[6]

Z. Fan, Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives, Indagationes Mathematicae, 25 (2014), 516-524. doi: 10.1016/j.indag.2014.01.002.

[7]

V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation, The Australian Journal of Mathematical Analysis and Applications, 3 (2006), Art. 16, 8 pp.

[8]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131. doi: 10.1137/080718942.

[9]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin Heidelberg, 1972.

[10]

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 351 (2009), 218-223. doi: 10.1016/j.jmaa.2008.10.018.

[11]

Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation, Mathematics with Applications, 59 (2010), 1766-1772. doi: 10.1016/j.camwa.2009.08.015.

[12]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fractional Calculus and Applied Analysis, 15 (2012), 141-160. doi: 10.2478/s13540-012-0010-7.

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in: Waves and Stability in Continuous Media, World Scientific, Singapore, 23 (1994), 246-251.

[14]

F. Mainardi, The time fractional diffusion-wave equation, Radiophysics and Quantum Electronics, 38 (1995), 13-24. doi: 10.1007/BF01051854.

[15]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9 (1996), 23-28. doi: 10.1016/0893-9659(96)00089-4.

[16]

J. MuB. Ahmad and S. Huang, Existence and regularity of solutions to time-fractional diffusion equations, Computers & Mathematics with Applications, 73 (2017), 985-996. doi: 10.1016/j.camwa.2016.04.039.

[17] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[18]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equation and application to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447. doi: 10.1016/j.jmaa.2011.04.058.

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.

[20]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag Berlin Heidelberg, 2007.

[21]

R. WangD. Chen and T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235. doi: 10.1016/j.jde.2011.08.048.

[22]

K. Yosida, Functional Analysis, sixth edition, Springer-Verlag, Berlin Heidelberg, 1980.

[23]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146. doi: 10.1007/s00208-012-0834-9.

[24]

Z. Zhang and B. Liu, Existence of mild solutions for fractional evolution equations, Journal of Fractional Calculus and Applications, 2 (2012), 1-10.

[25]

M. ZhengF. LiuI. Turner and V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM Journal on Scientific Computing, 37 (2015), 701-724. doi: 10.1137/140980545.

show all references

References:
[1]

O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155. doi: 10.1023/A:1016539022492.

[2]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255. doi: 10.1016/j.jde.2003.12.002.

[3]

A. M. A. El-Sayed, Frartiorial order tliffusion-wave equation, International Journal of Theoretical Physics, 35 (1996), 311-322. doi: 10.1007/BF02083817.

[4]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations, 22 (2006), 558-576. doi: 10.1002/num.20112.

[5]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 1998.

[6]

Z. Fan, Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives, Indagationes Mathematicae, 25 (2014), 516-524. doi: 10.1016/j.indag.2014.01.002.

[7]

V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation, The Australian Journal of Mathematical Analysis and Applications, 3 (2006), Art. 16, 8 pp.

[8]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131. doi: 10.1137/080718942.

[9]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin Heidelberg, 1972.

[10]

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 351 (2009), 218-223. doi: 10.1016/j.jmaa.2008.10.018.

[11]

Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation, Mathematics with Applications, 59 (2010), 1766-1772. doi: 10.1016/j.camwa.2009.08.015.

[12]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fractional Calculus and Applied Analysis, 15 (2012), 141-160. doi: 10.2478/s13540-012-0010-7.

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in: Waves and Stability in Continuous Media, World Scientific, Singapore, 23 (1994), 246-251.

[14]

F. Mainardi, The time fractional diffusion-wave equation, Radiophysics and Quantum Electronics, 38 (1995), 13-24. doi: 10.1007/BF01051854.

[15]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9 (1996), 23-28. doi: 10.1016/0893-9659(96)00089-4.

[16]

J. MuB. Ahmad and S. Huang, Existence and regularity of solutions to time-fractional diffusion equations, Computers & Mathematics with Applications, 73 (2017), 985-996. doi: 10.1016/j.camwa.2016.04.039.

[17] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[18]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equation and application to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447. doi: 10.1016/j.jmaa.2011.04.058.

[19]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.

[20]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag Berlin Heidelberg, 2007.

[21]

R. WangD. Chen and T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235. doi: 10.1016/j.jde.2011.08.048.

[22]

K. Yosida, Functional Analysis, sixth edition, Springer-Verlag, Berlin Heidelberg, 1980.

[23]

R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146. doi: 10.1007/s00208-012-0834-9.

[24]

Z. Zhang and B. Liu, Existence of mild solutions for fractional evolution equations, Journal of Fractional Calculus and Applications, 2 (2012), 1-10.

[25]

M. ZhengF. LiuI. Turner and V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM Journal on Scientific Computing, 37 (2015), 701-724. doi: 10.1137/140980545.

[1]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[2]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[3]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[4]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[5]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[6]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[7]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[8]

Kenichi Fujishiro, Yavar Kian. Determination of time dependent factors of coefficients in fractional diffusion equations. Mathematical Control & Related Fields, 2016, 6 (2) : 251-269. doi: 10.3934/mcrf.2016003

[9]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[10]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[11]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[12]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[13]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[14]

Meng Zhao, Aijie Cheng, Hong Wang. A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3529-3545. doi: 10.3934/dcdsb.2017178

[15]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[16]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[17]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[18]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[19]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[20]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (26)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]