doi: 10.3934/dcdsb.2018322

On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators

1. 

Department of Mathematics, Institute of Applied Mathematical Sciences and National Center for Theoretical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

2. 

Department of Mathematical Sciences, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

Received  February 2018 Revised  August 2018 Published  January 2019

We investigate the collective behavior of synchrony for the Kuramoto and Winfree models. We first prove the global convergence of frequency synchronization for the non-identical Kuramoto system of three oscillators. It is shown that the uniform boundedness of the diameter of the phase functions implies complete frequency synchronization. In light of this, we show, under a suitable condition on the coupling strength and deviation of the intrinsic frequencies, that the diameter function of the phases is uniformly bounded. In a similar spirit, we also prove the global convergence of phase-locked synchronization for the Winfree model of $ N $ oscillators for $ N\ge2 $.

Citation: Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018322
References:
[1]

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137–185

[2]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011.

[3]

F. Dörfler and F. Bullo, Synchronization in Complex Networks of Phase Oscillators: A Survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012.

[4]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7.

[5]

B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542.

[6]

B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585. doi: 10.1007/BF00164052.

[7]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091. doi: 10.4310/CMS.2016.v14.n4.a10.

[8]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4236. doi: 10.1016/j.jde.2015.11.008.

[9]

C.-H. Hsia, C.-Y. Jung and B. Kwon, On the synchronization theory of Kuramoto oscillators under the effect of inertia, preprint, arXiv: 1712.10111

[10]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.

[11]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 39, Springer, New York, 1975,420–422.

[12]

J. Lunz, Complete synchronization of Kuramoto oscillators, J. Phys. A: Math. Theor., 44 (2011), 425102, 14 pp. doi: 10.1088/1751-8113/44/42/425102.

[13]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4.

[14]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.

[15]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.

show all references

References:
[1]

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137–185

[2]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011.

[3]

F. Dörfler and F. Bullo, Synchronization in Complex Networks of Phase Oscillators: A Survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012.

[4]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7.

[5]

B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542.

[6]

B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571-585. doi: 10.1007/BF00164052.

[7]

S.-Y. HaH. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091. doi: 10.4310/CMS.2016.v14.n4.a10.

[8]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4236. doi: 10.1016/j.jde.2015.11.008.

[9]

C.-H. Hsia, C.-Y. Jung and B. Kwon, On the synchronization theory of Kuramoto oscillators under the effect of inertia, preprint, arXiv: 1712.10111

[10]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.

[11]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 39, Springer, New York, 1975,420–422.

[12]

J. Lunz, Complete synchronization of Kuramoto oscillators, J. Phys. A: Math. Theor., 44 (2011), 425102, 14 pp. doi: 10.1088/1751-8113/44/42/425102.

[13]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4.

[14]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.

[15]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.

Figure 4.2.  The Kuramoto model (1.1) with $N = 3$, $K = 1$, $D(\Omega)/K = 1.23691$
Figure 4.1.  The Kuramoto model (1.1) with $N = 3$, $K = 1$, $D(\Omega)/K = 0.0201916$. The plots are in log scale in $t$
Figure 4.3.  The Winfree model (3.1) with $N = 5$, $\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}} = 1.15405$ where the matrix $K = K_1$ is given in (4.2). The plots are in log scale in $t$
Figure 4.4.  The Winfree model (3.1) with $N = 5$, $K = $, $\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}} = 13.8456$ where the matrix $K = K_2$ is given in (4.2)
Table 2.  Parameters for Kuramoto model experimented in Table 3. The notation $ U(a, b) $ is a uniform random distribution over $ [a, b] $
Case $N$ $K$ $\Omega$ $D(\Omega)/K$ $\Theta(0)$
(Ⅰ) $3$ $1$ $\{-0.1, 0.1, 0.0\}$ $0.2$ $\{1.5, -1.7, 2.1\}$
(Ⅱ) $5$ $2$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $1$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$
(Ⅲ) $20$ $1$ $U(-0.123, 0.123)$ $0.214915$ $U(-\pi, \pi)$
(Ⅰ)' $3$ $1$ $\{-0.6, 0.9, 0.5\}$ $1.5$ $\{-3.0, -0.7, -2.0\}$
(Ⅱ)' $5$ $1$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $2$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$
(Ⅲ)' $20$ $1.5$ $U(-1.23, 1.23)$ $1.59328$ $U(-\pi, \pi)$
Case $N$ $K$ $\Omega$ $D(\Omega)/K$ $\Theta(0)$
(Ⅰ) $3$ $1$ $\{-0.1, 0.1, 0.0\}$ $0.2$ $\{1.5, -1.7, 2.1\}$
(Ⅱ) $5$ $2$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $1$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$
(Ⅲ) $20$ $1$ $U(-0.123, 0.123)$ $0.214915$ $U(-\pi, \pi)$
(Ⅰ)' $3$ $1$ $\{-0.6, 0.9, 0.5\}$ $1.5$ $\{-3.0, -0.7, -2.0\}$
(Ⅱ)' $5$ $1$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $2$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$
(Ⅲ)' $20$ $1.5$ $U(-1.23, 1.23)$ $1.59328$ $U(-\pi, \pi)$
Table 3.  The Kuramoto phases $ \Theta(t) $ and the modulus of the order parameter, $ |r| $, given in (4.1)
$t$(Ⅰ)(Ⅱ)(Ⅲ)(Ⅰ)'(Ⅱ)'(Ⅲ)'
$0$$D(\Theta(t))$3.800004.700004.601702.300004.700005.67130
$D(\dot{\Theta}(t))$0.231081.932600.678780.611641.886702.41560
$|r|$0.345150.305110.272910.603970.305110.03716
$5$$D(\Theta(t))$6.051706.961000.485077.563208.1075013.97020
$D(\dot{\Theta}(t))$0.156160.003750.415490.577951.226803.03850
$|r|$0.988820.914980.992690.868060.758480.72047
$20$$D(\Theta(t))$6.182706.962200.2157820.3800028.0432022.71800
$D(\dot{\Theta}(t))$0.000000.000000.000000.385121.013600.94404
$|r|$0.996640.914830.998140.808570.616950.60180
$150$$D(\Theta(t))$6.182706.962200.21578133.80190228.90490128.11660
$D(\dot{\Theta}(t))$0.000000.000000.000000.363090.839002.09790
$|r|$0.996640.914830.998140.720700.603480.76208
$500$$D(\Theta(t))$6.182706.962200.21578441.10500782.61200405.01650
$D(\dot{\Theta}(t))$0.000000.000000.000000.493831.247700.46759
$|r|$0.996640.914830.998140.866420.408410.68921
$t$(Ⅰ)(Ⅱ)(Ⅲ)(Ⅰ)'(Ⅱ)'(Ⅲ)'
$0$$D(\Theta(t))$3.800004.700004.601702.300004.700005.67130
$D(\dot{\Theta}(t))$0.231081.932600.678780.611641.886702.41560
$|r|$0.345150.305110.272910.603970.305110.03716
$5$$D(\Theta(t))$6.051706.961000.485077.563208.1075013.97020
$D(\dot{\Theta}(t))$0.156160.003750.415490.577951.226803.03850
$|r|$0.988820.914980.992690.868060.758480.72047
$20$$D(\Theta(t))$6.182706.962200.2157820.3800028.0432022.71800
$D(\dot{\Theta}(t))$0.000000.000000.000000.385121.013600.94404
$|r|$0.996640.914830.998140.808570.616950.60180
$150$$D(\Theta(t))$6.182706.962200.21578133.80190228.90490128.11660
$D(\dot{\Theta}(t))$0.000000.000000.000000.363090.839002.09790
$|r|$0.996640.914830.998140.720700.603480.76208
$500$$D(\Theta(t))$6.182706.962200.21578441.10500782.61200405.01650
$D(\dot{\Theta}(t))$0.000000.000000.000000.493831.247700.46759
$|r|$0.996640.914830.998140.866420.408410.68921
Table 1.  Parameters for Winfree model experimented in Table 4. The upper triangular entries of matrices $ K_i $, $ i = 3, \cdots, 8 $ are generated from a uniform random distribution over $ [0.5, 1.0] $ and the lower triangular entries by a symmetry. $ U(a, b) $ denotes a uniform random distribution over $ [a, b] $.
Case $N$ $K$ $\Omega$ $\displaystyle\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}}$ $\Theta(0)$
(Ⅰ) $3$ $K_3$ $\{1.7, 1.1, -1.7\}$ $2.56732$ $\{-0.9, 2.7, -3.0\}$
(Ⅱ) $5$ $K_4$ $\{-1.1, -1.7, 0.9, 1.4, -0.4\}$ $2.52008$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$
(Ⅲ) $20$ $K_5$ $U(-28, 28)$ $37.4299$ $U(-\pi, \pi)$
(Ⅰ)' $3$ $K_6$ $\{5.0, 2.1, -3.7\}$ $7.01639$ $\{-0.9, 2.7, -3.0\}$
(Ⅱ)' $5$ $K_7$ $\{-2.1, -1.7, 0.9, 10.4, -8.4\}$ $12.6565$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$
(Ⅲ)' $20$ $K_8$ $U(-28, 28)$ $49.8966$ $U(-\pi, \pi)$
Case $N$ $K$ $\Omega$ $\displaystyle\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}}$ $\Theta(0)$
(Ⅰ) $3$ $K_3$ $\{1.7, 1.1, -1.7\}$ $2.56732$ $\{-0.9, 2.7, -3.0\}$
(Ⅱ) $5$ $K_4$ $\{-1.1, -1.7, 0.9, 1.4, -0.4\}$ $2.52008$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$
(Ⅲ) $20$ $K_5$ $U(-28, 28)$ $37.4299$ $U(-\pi, \pi)$
(Ⅰ)' $3$ $K_6$ $\{5.0, 2.1, -3.7\}$ $7.01639$ $\{-0.9, 2.7, -3.0\}$
(Ⅱ)' $5$ $K_7$ $\{-2.1, -1.7, 0.9, 10.4, -8.4\}$ $12.6565$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$
(Ⅲ)' $20$ $K_8$ $U(-28, 28)$ $49.8966$ $U(-\pi, \pi)$
Table 4.  The Winfree phases $ \Theta(t) $ and the modulus of the order parameter, $ |r| $, given in (4.1).
$t$(Ⅰ)(Ⅱ)(Ⅲ)(Ⅰ)'(Ⅱ)'(Ⅲ)'
$0$$D(\Theta(t))$5.700004.000005.740005.700004.000005.74710
$D(\dot{\Theta}(t))$4.277409.3906054.673309.4228015.1192076.17700
$|r|$0.455370.173380.032570.455370.173380.24487
$5$$D(\Theta(t))$13.186400.4028714.9570030.7802081.8434027.60650
$D(\dot{\Theta}(t))$0.000000.000000.0000011.3926019.274900.98300
$|r|$0.945440.987660.776020.909940.421640.80234
$20$$D(\Theta(t))$13.186400.4028714.95700109.18220316.9740078.33540
$D(\dot{\Theta}(t))$0.000000.000000.000003.667109.381800.88459
$|r|$0.945440.987660.776020.425670.648360.77224
$150$$D(\Theta(t))$13.186400.4028714.95700818.106002347.20000549.54340
$D(\dot{\Theta}(t))$0.000000.000000.0000010.2044016.589800.72854
$|r|$0.945440.987660.776020.780810.558720.77419
$500$$D(\Theta(t))$13.186400.4028714.957002725.000007813.200001818.60000
$D(\dot{\Theta}(t))$0.000000.000000.000005.5728011.352200.35697
$|r|$0.945440.987660.776020.190580.577540.78170
$t$(Ⅰ)(Ⅱ)(Ⅲ)(Ⅰ)'(Ⅱ)'(Ⅲ)'
$0$$D(\Theta(t))$5.700004.000005.740005.700004.000005.74710
$D(\dot{\Theta}(t))$4.277409.3906054.673309.4228015.1192076.17700
$|r|$0.455370.173380.032570.455370.173380.24487
$5$$D(\Theta(t))$13.186400.4028714.9570030.7802081.8434027.60650
$D(\dot{\Theta}(t))$0.000000.000000.0000011.3926019.274900.98300
$|r|$0.945440.987660.776020.909940.421640.80234
$20$$D(\Theta(t))$13.186400.4028714.95700109.18220316.9740078.33540
$D(\dot{\Theta}(t))$0.000000.000000.000003.667109.381800.88459
$|r|$0.945440.987660.776020.425670.648360.77224
$150$$D(\Theta(t))$13.186400.4028714.95700818.106002347.20000549.54340
$D(\dot{\Theta}(t))$0.000000.000000.0000010.2044016.589800.72854
$|r|$0.945440.987660.776020.780810.558720.77419
$500$$D(\Theta(t))$13.186400.4028714.957002725.000007813.200001818.60000
$D(\dot{\Theta}(t))$0.000000.000000.000005.5728011.352200.35697
$|r|$0.945440.987660.776020.190580.577540.78170
[1]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[2]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[3]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[4]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[5]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[6]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sine-Gordon wave model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2969-2990. doi: 10.3934/dcdsb.2016082

[7]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[8]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[9]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[10]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[11]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[12]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[13]

Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234

[14]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[15]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[16]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[17]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[18]

Monica De Angelis, Gaetano Fiore. Diffusion effects in a superconductive model. Communications on Pure & Applied Analysis, 2014, 13 (1) : 217-223. doi: 10.3934/cpaa.2014.13.217

[19]

Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253

[20]

J. R. Fernández, R. Martínez, J. M. Viaño. Analysis of a bone remodeling model. Communications on Pure & Applied Analysis, 2009, 8 (1) : 255-274. doi: 10.3934/cpaa.2009.8.255

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]