doi: 10.3934/dcdsb.2018311

Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient

1. 

Dpto. de Matemática, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70910-900, Brasília - DF, Brazil

2. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, Sevilla, C/. Tarfia s/n, 41012, Spain

To Peter Kloeden for his 70th birthday

Received  March 2018 Revised  July 2018 Published  October 2018

In this paper we study a stationary problem arising from population dynamics with a local and nonlocal variable diffusion coefficient. We show the existence of an unbounded continuum of positive solutions that bifurcates from the trivial solution. The global structure of this continuum depends on the value of the nonlocal diffusion at infinity and the relative position of the refuge of the species and of the sets where it diffuses locally and not locally, respectively.

Citation: Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018311
References:
[1]

C. O. AlvesF. J. S. A. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems, Topol. Methods Nonlinear Anal., 49 (2017), 497-509.

[2]

A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some semilinear Schrödinger equations, Math. Z.,, 224 (1997), 347-362. doi: 10.1007/PL00004586.

[3]

D. ArcoyaT. Leonori and A. Primo, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano Theorem, Acta Appl. Math.,, 127 (2013), 87-104. doi: 10.1007/s10440-012-9792-1.

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64. doi: 10.1016/0362-546X(86)90011-8.

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18. doi: 10.1016/j.na.2014.07.011.

[7]

M. Chipot and F. J. S. A. Corrêa, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc., New Series, 40 (2009), 1-13. doi: 10.1007/s00574-009-0017-9.

[8]

M. Chipot and P. Roy, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), 289-300.

[9]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, A non-local non-autonomous diffusion problem: linear and sublinear cases, Z. Angew. Math. Phys., 68 (2017), Art. 108, 20 pp. doi: 10.1007/s00033-017-0856-y.

[10]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, The influence of a metasolution on the behaviour of the logistic equation with nonlocal diffusion coefficient, Calc. Var. Partial Differential Equations, 57 (2018), Art. 100, 26 pp. doi: 10.1007/s00526-018-1385-z.

[11]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.

[12]

J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, Taylor and Francis Group, 2016.

[13]

A. Molino and J. D. Rossi, A concave-convex problem with a variable operator, Calc. Var. Partial Differential Equations, 57 (2018), Art. 10, 26 pp. doi: 10.1007/s00526-017-1291-9.

[14]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u + {\rm{ }}\lambda u - h{u^p} = 0$ on the compact manifolds, Transactions of the American Mathematical Society, 331 (1992), 503-527. doi: 10.2307/2154124.

[15]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.

[16]

P. Roy, Existence results for some nonlocal problems, Differ. Equ. Appl., 6 (2014), 361-381. doi: 10.7153/dea-06-20.

[17]

B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problem, Bound. Value. Probl., 2016, Paper No. 165, 35 pp. doi: 10.1186/s13661-016-0670-z.

[18]

B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72-102. doi: 10.1016/j.jmaa.2016.04.023.

show all references

References:
[1]

C. O. AlvesF. J. S. A. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems, Topol. Methods Nonlinear Anal., 49 (2017), 497-509.

[2]

A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some semilinear Schrödinger equations, Math. Z.,, 224 (1997), 347-362. doi: 10.1007/PL00004586.

[3]

D. ArcoyaT. Leonori and A. Primo, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano Theorem, Acta Appl. Math.,, 127 (2013), 87-104. doi: 10.1007/s10440-012-9792-1.

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64. doi: 10.1016/0362-546X(86)90011-8.

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18. doi: 10.1016/j.na.2014.07.011.

[7]

M. Chipot and F. J. S. A. Corrêa, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc., New Series, 40 (2009), 1-13. doi: 10.1007/s00574-009-0017-9.

[8]

M. Chipot and P. Roy, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), 289-300.

[9]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, A non-local non-autonomous diffusion problem: linear and sublinear cases, Z. Angew. Math. Phys., 68 (2017), Art. 108, 20 pp. doi: 10.1007/s00033-017-0856-y.

[10]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, The influence of a metasolution on the behaviour of the logistic equation with nonlocal diffusion coefficient, Calc. Var. Partial Differential Equations, 57 (2018), Art. 100, 26 pp. doi: 10.1007/s00526-018-1385-z.

[11]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.

[12]

J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, Taylor and Francis Group, 2016.

[13]

A. Molino and J. D. Rossi, A concave-convex problem with a variable operator, Calc. Var. Partial Differential Equations, 57 (2018), Art. 10, 26 pp. doi: 10.1007/s00526-017-1291-9.

[14]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u + {\rm{ }}\lambda u - h{u^p} = 0$ on the compact manifolds, Transactions of the American Mathematical Society, 331 (1992), 503-527. doi: 10.2307/2154124.

[15]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.

[16]

P. Roy, Existence results for some nonlocal problems, Differ. Equ. Appl., 6 (2014), 361-381. doi: 10.7153/dea-06-20.

[17]

B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problem, Bound. Value. Probl., 2016, Paper No. 165, 35 pp. doi: 10.1186/s13661-016-0670-z.

[18]

B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72-102. doi: 10.1016/j.jmaa.2016.04.023.

Figure 1.  Bifurcation diagrams when $\lambda _0<\lambda _\infty<\infty$ and $\lambda _\infty<\lambda _0<\infty$, respectively
Figure 2.  Bifurcation diagrams when $\lambda _\infty = 0$ and $\lambda_\infty = \infty$, respectively. For example, this last diagram appears when $b\geq b_0>0$
[1]

Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54

[2]

Rafael de la Rosa, María Santos Bruzón. Differential invariants of a generalized variable-coefficient Gardner equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 747-757. doi: 10.3934/dcdss.2018047

[3]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[4]

Meina Gao. Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 173-204. doi: 10.3934/dcds.2015.35.173

[5]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[6]

Bastian Harrach. Simultaneous determination of the diffusion and absorption coefficient from boundary data. Inverse Problems & Imaging, 2012, 6 (4) : 663-679. doi: 10.3934/ipi.2012.6.663

[7]

Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285

[8]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[9]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[10]

J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037

[11]

Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014

[12]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[13]

Yunmei Chen, Weihong Guo, Qingguo Zeng, Yijun Liu. A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Problems & Imaging, 2008, 2 (2) : 205-224. doi: 10.3934/ipi.2008.2.205

[14]

Elie Bretin, Imen Mekkaoui, Jérôme Pousin. Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula. Inverse Problems & Imaging, 2018, 12 (1) : 125-152. doi: 10.3934/ipi.2018005

[15]

Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467

[16]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[17]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[18]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[19]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[20]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (18)
  • HTML views (44)
  • Cited by (0)

[Back to Top]