• Previous Article
    Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time
  • DCDS-B Home
  • This Issue
  • Next Article
    Oscillations and asymptotic convergence for a delay differential equation modeling platelet production
doi: 10.3934/dcdsb.2018310

Pollution control for switching diffusion models: Approximation methods and numerical results

1. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

2. 

Department of Mathematics, University of Georgia, Athens, GA 30602, USA

3. 

Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: George Yin

Received  March 2018 Revised  July 2018 Published  November 2018

Fund Project: This research was supported in part by the Army Research Office under grant W911NF-15-1-0218. The research of Q. Zhang was also supported in part by the Simons Foundation under 235179

This work focuses on optimal pollution controls. The main effort is devoted to obtaining approximation methods for optimal pollution control. To take into consideration of random environment and other random factors, the control system is formulated as a controlled switching diffusion. Markov chain approximation techniques are used to design the computational schemes. Convergence of the algorithms are obtained. To demonstrate, numerical experimental results are presented. A particular feature is that computation using real data sets is provided.

Citation: Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018310
References:
[1]

G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, ESAIM: Mathematical Modelling and Numerical Analysis, 36 (2002), 33-54. doi: 10.1051/m2an:2002002.

[2]

S. De VitoE. MasseraM. PigaL. Martinotto and G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and Actuators B: Chemical, 129 (2008), 750-757.

[3]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Numerical Solution, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.

[4]

H. Jasso-Fuentes and G. Yin, Advanced Criteria for controlled Markov-Modulated Diffusions in an Infinite Horizon: Overtaking, Bias, and Blackwell Optimality, Science Press, Beijing, China, 2013.

[5]

K. Kawaguchi and H. Morimoto, Long-run average welfare in a pollution accumulation model, J. Econom. Dyn. Control, 31 (2007), 703-720. doi: 10.1016/j.jedc.2006.04.001.

[6]

E. KeelerM. Spence and R. Zeckhauser, The optimal control of pollution, J. Economic Theory, 4 (1972), 19-34.

[7]

K. KhalvatiS. A. ParkJ. Dreher and R. Rao, A probabilistic model of social decision making based on reward maximization, Advances in Neural Information Processing Systems, (2016), 2901-2909.

[8]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[9]

H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.

[10]

H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer Science & Business Media, 1992. doi: 10.1007/978-1-4684-0441-8.

[11]

D. Larose, K-nearest neighbor algorithm, Discovering Knowledge in Data: An Introduction to Data Mining, (2005), 90-106.

[12]

X. LuG. YinQ. ZhangC. Zhang and X. Guo, Building up an illiquid stock position subject to expected fund availability: Optimal controls and numerical methods, Appl. Math. Optim., 76 (2017), 501-533. doi: 10.1007/s00245-016-9359-z.

[13]

Q. SongG. Yin and Z. Zhang, Numerical method for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica, 42 (2006), 1147-1157. doi: 10.1016/j.automatica.2006.03.016.

[14]

G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, Second Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.

[15]

G. YinQ. Zhang and G. Badowski, Discrete-time singularly perturbed Markov chains: Aggregation, occupation measures, and switching diffusion limit, Adv. in Appl. Probab., 35 (2003), 449-476. doi: 10.1239/aap/1051201656.

[16]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[17]

Q. Zhang and G. Yin, On nearly optimal controls of hybrid LQG problems, IEEE Trans. Automat. Control, 44 (1999), 2271-2282. doi: 10.1109/9.811209.

[18]

Q. ZhangC. Zhang and G. Yin, Optimal stopping of two-time scale Markovian systems: Analysis, numerical methods, and applications, Nonlinear Analysis: Hybrid Systems, 26 (2017), 151-167. doi: 10.1016/j.nahs.2017.05.005.

show all references

References:
[1]

G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, ESAIM: Mathematical Modelling and Numerical Analysis, 36 (2002), 33-54. doi: 10.1051/m2an:2002002.

[2]

S. De VitoE. MasseraM. PigaL. Martinotto and G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and Actuators B: Chemical, 129 (2008), 750-757.

[3]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Numerical Solution, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.

[4]

H. Jasso-Fuentes and G. Yin, Advanced Criteria for controlled Markov-Modulated Diffusions in an Infinite Horizon: Overtaking, Bias, and Blackwell Optimality, Science Press, Beijing, China, 2013.

[5]

K. Kawaguchi and H. Morimoto, Long-run average welfare in a pollution accumulation model, J. Econom. Dyn. Control, 31 (2007), 703-720. doi: 10.1016/j.jedc.2006.04.001.

[6]

E. KeelerM. Spence and R. Zeckhauser, The optimal control of pollution, J. Economic Theory, 4 (1972), 19-34.

[7]

K. KhalvatiS. A. ParkJ. Dreher and R. Rao, A probabilistic model of social decision making based on reward maximization, Advances in Neural Information Processing Systems, (2016), 2901-2909.

[8]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[9]

H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.

[10]

H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer Science & Business Media, 1992. doi: 10.1007/978-1-4684-0441-8.

[11]

D. Larose, K-nearest neighbor algorithm, Discovering Knowledge in Data: An Introduction to Data Mining, (2005), 90-106.

[12]

X. LuG. YinQ. ZhangC. Zhang and X. Guo, Building up an illiquid stock position subject to expected fund availability: Optimal controls and numerical methods, Appl. Math. Optim., 76 (2017), 501-533. doi: 10.1007/s00245-016-9359-z.

[13]

Q. SongG. Yin and Z. Zhang, Numerical method for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica, 42 (2006), 1147-1157. doi: 10.1016/j.automatica.2006.03.016.

[14]

G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, Second Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.

[15]

G. YinQ. Zhang and G. Badowski, Discrete-time singularly perturbed Markov chains: Aggregation, occupation measures, and switching diffusion limit, Adv. in Appl. Probab., 35 (2003), 449-476. doi: 10.1239/aap/1051201656.

[16]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[17]

Q. Zhang and G. Yin, On nearly optimal controls of hybrid LQG problems, IEEE Trans. Automat. Control, 44 (1999), 2271-2282. doi: 10.1109/9.811209.

[18]

Q. ZhangC. Zhang and G. Yin, Optimal stopping of two-time scale Markovian systems: Analysis, numerical methods, and applications, Nonlinear Analysis: Hybrid Systems, 26 (2017), 151-167. doi: 10.1016/j.nahs.2017.05.005.

Figure 1.  The control actions in two states
Figure 2.  The value functions in two states
Figure 3.  The control actions and value functions in two states
Figure 4.  The histograms of distributions
Figure 5.  Value functions and optimal controls for NO2
Figure 6.  Control actions of NO2 on testing set based on optimal strategy
Figure 7.  Control actions of NOx on testing set based on optimal strategy
Figure 8.  Value functions and optimal controls for 2 dimension system
Figure 9.  Value functions and optimal controls for a 4 dimension case
Figure 10.  Control actions on testing set based on optimal strategy
[1]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[2]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[3]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

[4]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[5]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[6]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[7]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[8]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2018, 8 (0) : 1-38. doi: 10.3934/mcrf.2019001

[9]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[10]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[11]

Dang H. Nguyen, George Yin. Recurrence for switching diffusion with past dependent switching and countable state space. Mathematical Control & Related Fields, 2018, 8 (3&4) : 879-897. doi: 10.3934/mcrf.2018039

[12]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[13]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[14]

Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks & Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627

[15]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[16]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[17]

Jakub Cupera. Diffusion approximation of neuronal models revisited. Mathematical Biosciences & Engineering, 2014, 11 (1) : 11-25. doi: 10.3934/mbe.2014.11.11

[18]

Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2433-2455. doi: 10.3934/dcdsb.2018053

[19]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018132

[20]

Lin Xu, Dingjun Yao, Gongpin Cheng. Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-32. doi: 10.3934/jimo.2018154

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (9)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]