• Previous Article
    Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness
  • DCDS-B Home
  • This Issue
  • Next Article
    On the backward uniqueness of the stochastic primitive equations with additive noise
doi: 10.3934/dcdsb.2018299

Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling

Institute of Mathematics, Czech Academy of Sciences, Žitná 25,115 67 Praha 1, Czech Republic

* Corresponding author: Giselle A. Monteiro

Received  March 2018 Revised  June 2018 Published  October 2018

Hysteresis is an important issue in modeling piezoelectric materials, for example, in applications to energy harvesting, where hysteresis losses may influence the efficiency of the process.The main problem in numerical simulations is the inversion of the underlying hysteresis operator.Moreover, hysteresis dissipation is accompanied with heat production, which in turn increases thetemperature of the device and may change its physical characteristics. More accurate models thereforehave to take the temperature dependence into account for a correct energy balance.We prove here that the classical Preisach operator with a fairly general parameter-dependenceadmits a Lipschitz continuous inverse in the space of right-continuous regulated functions, propose a time-discrete and memory-discrete inversion algorithm, and show that higher regularity of the inputs leads to a higher regularity of the output of the inverse.

Citation: Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018299
References:
[1]

M. Al JanaidehF. Deasy and P. Krejčí, Inversion of hysteresis and creep operators, Physica B: Condensed Matter, 407 (2012), 1354-1356.

[2]

M. Brokate and P. Krejčí, Weak differentiability of scalar hysteresis operators, Discrete Cont. Dyn. Systems A, 35 (2015), 2405-2421. doi: 10.3934/dcds.2015.35.2405.

[3]

M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis, J. Reine Angew. Math., 402 (1989), 1-40. doi: 10.1515/crll.1989.402.1.

[4]

R. CrossA. M. Krasnosel'skii and A. V. Pokrovskii, A time-dependent Preisach model, Physica B, 306 (2001), 206-210.

[5]

D. Davino, A. Giustiniani and C. Visone, Magnetoelastic energy harvesting: Modeling and experiments, in Smart Actuation and Sensing Systems - Recent Advances and Future Challenges (G. Berselli, R. Vertechy and G. Vassura, eds.), InTech, (2012), 487-512.

[6]

D. DavinoP. KrejčíA. PimenovD. Rachinskii and C. Visone, Analysis of an operator-differential model for magnetostrictive energy harvesting, Communications in Nonlinear Science and Numerical Simulation, 39 (2016), 504-519. doi: 10.1016/j.cnsns.2016.04.004.

[7]

D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through 'thermodynamic' compatibility, Smart Materials and Structures, 22 (2013), 095009.

[8]

B. Kaltenbacher and P. Krejčí, A thermodynamically consistent phenomenological model for ferroeletric and ferroelastic hysteresis, ZAMM - Z. Angew. Math. Mech., 96 (2016), 874-891. doi: 10.1002/zamm.201400292.

[9]

B. Kaltenbacher and P. Krejčí, Analysis of an optimization problem for a piezoelectric energy harvester to appear in Arch. Appl. Mech. doi: 10.1007/s00419-018-1459-6.

[10]

M. Kamlah, Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena, Continuum Mechanics and Thermodynamics, 13 (2001), 219-268.

[11]

P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z., 193 (1986), 247-264. doi: 10.1007/BF01174335.

[12]

P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.

[13]

P. Krejčí, The Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.

[14]

P. Krejčí, The Preisach hysteresis model: Error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst Ser. S, 6 (2013), 101-119. doi: 10.3934/dcdss.2013.6.101.

[15]

P. KrejčíH. LambaG. A. Monteiro and D. Rachinskii, The Kurzweil integral in financial market modeling, Math. Bohem., 141 (2016), 261-286. doi: 10.21136/MB.2016.18.

[16]

P. Krejčí, H. Lamba and D. Rachinskii, Global stability of a piecewise linear macroeconomic model with a continuum of equilibrium states and sticky expectation, arXiv: 1711.07563.

[17]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.

[18]

P. Krejčí and G. A. Monteiro, Oscillations of a temperature-dependent piezoelectric rod, arXiv: 1803.10000

[19]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities - A modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407-418.

[20]

F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302.

[21]

C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators, Physica B: Condensed Matter, 343 (2004), 148-152.

show all references

References:
[1]

M. Al JanaidehF. Deasy and P. Krejčí, Inversion of hysteresis and creep operators, Physica B: Condensed Matter, 407 (2012), 1354-1356.

[2]

M. Brokate and P. Krejčí, Weak differentiability of scalar hysteresis operators, Discrete Cont. Dyn. Systems A, 35 (2015), 2405-2421. doi: 10.3934/dcds.2015.35.2405.

[3]

M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis, J. Reine Angew. Math., 402 (1989), 1-40. doi: 10.1515/crll.1989.402.1.

[4]

R. CrossA. M. Krasnosel'skii and A. V. Pokrovskii, A time-dependent Preisach model, Physica B, 306 (2001), 206-210.

[5]

D. Davino, A. Giustiniani and C. Visone, Magnetoelastic energy harvesting: Modeling and experiments, in Smart Actuation and Sensing Systems - Recent Advances and Future Challenges (G. Berselli, R. Vertechy and G. Vassura, eds.), InTech, (2012), 487-512.

[6]

D. DavinoP. KrejčíA. PimenovD. Rachinskii and C. Visone, Analysis of an operator-differential model for magnetostrictive energy harvesting, Communications in Nonlinear Science and Numerical Simulation, 39 (2016), 504-519. doi: 10.1016/j.cnsns.2016.04.004.

[7]

D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through 'thermodynamic' compatibility, Smart Materials and Structures, 22 (2013), 095009.

[8]

B. Kaltenbacher and P. Krejčí, A thermodynamically consistent phenomenological model for ferroeletric and ferroelastic hysteresis, ZAMM - Z. Angew. Math. Mech., 96 (2016), 874-891. doi: 10.1002/zamm.201400292.

[9]

B. Kaltenbacher and P. Krejčí, Analysis of an optimization problem for a piezoelectric energy harvester to appear in Arch. Appl. Mech. doi: 10.1007/s00419-018-1459-6.

[10]

M. Kamlah, Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena, Continuum Mechanics and Thermodynamics, 13 (2001), 219-268.

[11]

P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z., 193 (1986), 247-264. doi: 10.1007/BF01174335.

[12]

P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.

[13]

P. Krejčí, The Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.

[14]

P. Krejčí, The Preisach hysteresis model: Error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst Ser. S, 6 (2013), 101-119. doi: 10.3934/dcdss.2013.6.101.

[15]

P. KrejčíH. LambaG. A. Monteiro and D. Rachinskii, The Kurzweil integral in financial market modeling, Math. Bohem., 141 (2016), 261-286. doi: 10.21136/MB.2016.18.

[16]

P. Krejčí, H. Lamba and D. Rachinskii, Global stability of a piecewise linear macroeconomic model with a continuum of equilibrium states and sticky expectation, arXiv: 1711.07563.

[17]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.

[18]

P. Krejčí and G. A. Monteiro, Oscillations of a temperature-dependent piezoelectric rod, arXiv: 1803.10000

[19]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities - A modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407-418.

[20]

F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302.

[21]

C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators, Physica B: Condensed Matter, 343 (2004), 148-152.

[1]

Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101

[2]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[3]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[4]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[5]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[6]

J. Samuel Jiang, Hans G. Kaper, Gary K Leaf. Hysteresis in layered spring magnets. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 219-232. doi: 10.3934/dcdsb.2001.1.219

[7]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[8]

Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129

[9]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[10]

Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[11]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[12]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[13]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[14]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

[15]

Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405

[16]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

[17]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[18]

Frank Natterer. Photo-acoustic inversion in convex domains. Inverse Problems & Imaging, 2012, 6 (2) : 315-320. doi: 10.3934/ipi.2012.6.315

[19]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[20]

Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373

2017 Impact Factor: 0.972

Article outline

[Back to Top]