doi: 10.3934/dcdsb.2018290

A note on the convergence of the solution of the Novikov equation

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

* Corresponding author: Giuseppe Maria Coclite

Received  July 2017 Revised  June 2018 Published  October 2018

Fund Project: The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

We consider the Novikov and Camass-Holm equations, which contain nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solution of the dispersive equation converges to the unique entropy solution of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the $L^p$ setting.

Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018290
References:
[1]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[2]

G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differential Equations, 256 (2014), 3245-3277. doi: 10.1016/j.jde.2014.02.001.

[3]

G. M. Coclite and L. di Ruvo, A singural limit problem fro conservation laws related to the Rosenau equation, Jour. Abstr. differ. Equ. Appl., 8 (2017), 24-47.

[4]

G. M. Coclite and L. di Ruvo, A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law, Discrete Contin. Dynam. Systems., 36 (2016), 2981-2990. doi: 10.3934/dcds.2016.36.2981.

[5]

G. M. Coclite and L. di Ruvo, A note on convergence of the solutions of the Benjamin-Bona-Mahony type equations, Nonlinear Anal. Real World Appl., 40 (2018), 64-81. doi: 10.1016/j.nonrwa.2017.07.014.

[6]

G. M. Coclite and L. di Ruvo, On the convergence of the modified Rosenau and the modified Benjamin-Bona-Mahony equations, Comput. Math. Appl., 74 (2017), 899-919. doi: 10.1016/j.camwa.2016.02.016.

[7]

G. M. Coclite and L. di Ruvo, Convergence of the regularized short pulse equation to the short pulse one, Math. Nachr., 291 (2018), 774-792. doi: 10.1002/mana.201600301.

[8]

G. M. CocliteH. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. doi: 10.1137/040616711.

[9]

G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272. doi: 10.1080/03605300600781600.

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757.

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.

[12]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466.

[13]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.

[14]

P. L. da Silva and I. L. Freire, An equation unifying both Camassa-Holm and Noviokv equation, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., (2015), 304–311. doi: 10.3934/proc.2015.0304.

[15]

H. H. Dai and Y. Dai, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. doi: 10.1098/rspa.2000.0520.

[16]

C. De Lellis and F. Otto, Minimal entropy conditions for Burgers equation, Quart. Appl. Math., 62 (2004), 687-700. doi: 10.1090/qam/2104269.

[17]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479. doi: 10.1088/0951-7715/25/2/449.

[18]

A. A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, 14 (2001), 821-831.

[19]

A. N. W. HoneH. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikovs cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289. doi: 10.4310/DPDE.2009.v6.n3.a3.

[20]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41 (2008), 372002-372012. doi: 10.1088/1751-8113/41/37/372002.

[21]

S. Hwang, Singular limit problem of the Camassa-Holm type equation, J. Differential Equations, 235 (2007), 74-84. doi: 10.1016/j.jde.2006.12.011.

[22]

S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations, 27 (2002), 1229-1254. doi: 10.1081/PDE-120004900.

[23]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: 10.1017/S0022112001007224.

[24]

P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1992), 212-230. doi: 10.1016/S0362-546X(98)00012-1.

[25]

A. Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.

[26]

F. Murat, L'injection du cône positif de ${H}^{-1}$ dans ${W}^{-1, \, q}$ est compacte pour tout $q < 2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.

[27]

L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Diff. Equ., 250 (2011), 3002-3021. doi: 10.1016/j.jde.2011.01.030.

[28]

V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42 (2009), 342002, 14pp. doi: 10.1088/1751-8113/42/34/342002.

[29]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X.

[30]

M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. doi: 10.1080/03605308208820242.

[31]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[32]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844. doi: 10.1081/PDE-120016129.

[33]

X. Wu and Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor, 44 (2011), 055202, 17pp. doi: 10.1088/1751-8113/44/5/055202.

show all references

References:
[1]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[2]

G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differential Equations, 256 (2014), 3245-3277. doi: 10.1016/j.jde.2014.02.001.

[3]

G. M. Coclite and L. di Ruvo, A singural limit problem fro conservation laws related to the Rosenau equation, Jour. Abstr. differ. Equ. Appl., 8 (2017), 24-47.

[4]

G. M. Coclite and L. di Ruvo, A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law, Discrete Contin. Dynam. Systems., 36 (2016), 2981-2990. doi: 10.3934/dcds.2016.36.2981.

[5]

G. M. Coclite and L. di Ruvo, A note on convergence of the solutions of the Benjamin-Bona-Mahony type equations, Nonlinear Anal. Real World Appl., 40 (2018), 64-81. doi: 10.1016/j.nonrwa.2017.07.014.

[6]

G. M. Coclite and L. di Ruvo, On the convergence of the modified Rosenau and the modified Benjamin-Bona-Mahony equations, Comput. Math. Appl., 74 (2017), 899-919. doi: 10.1016/j.camwa.2016.02.016.

[7]

G. M. Coclite and L. di Ruvo, Convergence of the regularized short pulse equation to the short pulse one, Math. Nachr., 291 (2018), 774-792. doi: 10.1002/mana.201600301.

[8]

G. M. CocliteH. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. doi: 10.1137/040616711.

[9]

G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272. doi: 10.1080/03605300600781600.

[10]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757.

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.

[12]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545. doi: 10.1512/iumj.1998.47.1466.

[13]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.

[14]

P. L. da Silva and I. L. Freire, An equation unifying both Camassa-Holm and Noviokv equation, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., (2015), 304–311. doi: 10.3934/proc.2015.0304.

[15]

H. H. Dai and Y. Dai, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. doi: 10.1098/rspa.2000.0520.

[16]

C. De Lellis and F. Otto, Minimal entropy conditions for Burgers equation, Quart. Appl. Math., 62 (2004), 687-700. doi: 10.1090/qam/2104269.

[17]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479. doi: 10.1088/0951-7715/25/2/449.

[18]

A. A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, 14 (2001), 821-831.

[19]

A. N. W. HoneH. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikovs cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6 (2009), 253-289. doi: 10.4310/DPDE.2009.v6.n3.a3.

[20]

A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41 (2008), 372002-372012. doi: 10.1088/1751-8113/41/37/372002.

[21]

S. Hwang, Singular limit problem of the Camassa-Holm type equation, J. Differential Equations, 235 (2007), 74-84. doi: 10.1016/j.jde.2006.12.011.

[22]

S. Hwang and A. E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations, 27 (2002), 1229-1254. doi: 10.1081/PDE-120004900.

[23]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: 10.1017/S0022112001007224.

[24]

P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1992), 212-230. doi: 10.1016/S0362-546X(98)00012-1.

[25]

A. Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683.

[26]

F. Murat, L'injection du cône positif de ${H}^{-1}$ dans ${W}^{-1, \, q}$ est compacte pour tout $q < 2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.

[27]

L. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Diff. Equ., 250 (2011), 3002-3021. doi: 10.1016/j.jde.2011.01.030.

[28]

V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42 (2009), 342002, 14pp. doi: 10.1088/1751-8113/42/34/342002.

[29]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. doi: 10.1016/S0362-546X(01)00791-X.

[30]

M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. doi: 10.1080/03605308208820242.

[31]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[32]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844. doi: 10.1081/PDE-120016129.

[33]

X. Wu and Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor, 44 (2011), 055202, 17pp. doi: 10.1088/1751-8113/44/5/055202.

[1]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[2]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[3]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[4]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[5]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[6]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[7]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[8]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[9]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[10]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[11]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[12]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[13]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[14]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[15]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[16]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[17]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[18]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[19]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[20]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]