doi: 10.3934/dcdsb.2018279

Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping

1. 

Miquel Rosselló i Alemany, 51, 7 B, Palma de Mallorca, Spain

2. 

Universidad Miguel Hernández de Elche, Centro de Investigación Operativa, 03202, Elche (Alicante), Spain

* Corresponding author: jvalero@umh.es

Dedicated to Professor Peter Kloeden on his 70th birthday

Received  March 2018 Revised  June 2018 Published  October 2018

Fund Project: This work has been partially supported by Spanish Ministry of Economy and Competitiveness and FEDER, projects MTM2015-63723-P and MTM2016-74921-P, and by Junta de Andalucía (Spain), project P12-FQM-1492

In this paper we obtain the existence of global attractors for the dynamicalsystems generated by weak solution of the three-dimensional Navier-Stokesequations with damping. We consider two cases, depending on the values of the parameter β controlling the damping term. First, we prove that for β≥4 weaksolutions are unique and establish the existence of the global attractor forthe corresponding semigroup. Second, for 3≤β<4 we define amultivalued dynamical systems and prove the existence of the global attractoras well. Finally, some numerical simulations are performed.

Citation: Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018279
References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8.

[2]

X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809. doi: 10.1016/j.jmaa.2008.01.041.

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.

[4]

J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-642-98037-4.

[5]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14. doi: 10.1006/jdeq.1996.3166.

[6]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reacction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4155-4182. doi: 10.3934/dcds.2014.34.4155.

[7]

O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractors for general non-autonomous reaction-diffusion systems, in Continuous and Distributed Systems. Theory and Applications, M.Z.Zgurovsky and V.A. Sadovnichiy eds, 211 (2014), 163-180, Cham, Springer. doi: 10.1007/978-3-319-03146-0_12.

[8]

F. Huang and R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Rational Mech. Anal., 166 (2003), 359-376. doi: 10.1007/s00205-002-0234-5.

[9]

Y. Kim and K. Li, Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differential Equations, 2017 (2017), 1-11.

[10] O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, New-York, 1991. doi: 10.1017/CBO9780511569418.
[11]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Gauthier-Villar, Paris, 1969.

[12]

A. A. LinningerM. XenosD. C. ZhuM. R. SomayajiS. Kondapali and R. D. Penn, Cerebrospinal fluid flow in the normal and hydrocefalic human brain, IEEE Trans. Biomed. Eng., 54 (2007), 291-302.

[13]

V. S. Valero and J. Melnik AND, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[14] J. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.
[15]

X. Song and Y. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 239-252. doi: 10.3934/dcds.2011.31.239.

[16]

X. Song and Y. Hou, Uniform attractors for the three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351. doi: 10.1016/j.jmaa.2014.08.044.

[17]

X. SongF. Liang and J. Wu, Pullback D-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15PP. doi: 10.1186/s13661-016-0654-z.

[18]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[20]

J. Valero, On locally compact attractors of dynamical systems, J. Math. Anal. Appl., 237 (1999), 43-54. doi: 10.1006/jmaa.1999.6446.

[21]

H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, New York, 2007.

[22]

W. Wang and G. Zhou, Remarks on the regularity criterion of the Navier-Stokes equations with nonlinear damping, Math. Probl. Eng., 2015 (2015), Art. ID 310934, 5 pp. doi: 10.1155/2015/310934.

[23]

Z. ZhangX. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419. doi: 10.1016/j.jmaa.2010.11.019.

[24]

X. Zhong, Global well-posedness to the incompressible Navier-Stokes equations with damping, Electron. J. Qual. Theory Differ. Equ., 62 (2017), 1-9.

[25]

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Letters, 25 (2012), 1822-1825. doi: 10.1016/j.aml.2012.02.029.

show all references

References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238 (2003), 211-223. doi: 10.1007/s00220-003-0859-8.

[2]

X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809. doi: 10.1016/j.jmaa.2008.01.041.

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.

[4]

J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-642-98037-4.

[5]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14. doi: 10.1006/jdeq.1996.3166.

[6]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reacction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4155-4182. doi: 10.3934/dcds.2014.34.4155.

[7]

O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractors for general non-autonomous reaction-diffusion systems, in Continuous and Distributed Systems. Theory and Applications, M.Z.Zgurovsky and V.A. Sadovnichiy eds, 211 (2014), 163-180, Cham, Springer. doi: 10.1007/978-3-319-03146-0_12.

[8]

F. Huang and R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Rational Mech. Anal., 166 (2003), 359-376. doi: 10.1007/s00205-002-0234-5.

[9]

Y. Kim and K. Li, Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differential Equations, 2017 (2017), 1-11.

[10] O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, New-York, 1991. doi: 10.1017/CBO9780511569418.
[11]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Gauthier-Villar, Paris, 1969.

[12]

A. A. LinningerM. XenosD. C. ZhuM. R. SomayajiS. Kondapali and R. D. Penn, Cerebrospinal fluid flow in the normal and hydrocefalic human brain, IEEE Trans. Biomed. Eng., 54 (2007), 291-302.

[13]

V. S. Valero and J. Melnik AND, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[14] J. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.
[15]

X. Song and Y. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 239-252. doi: 10.3934/dcds.2011.31.239.

[16]

X. Song and Y. Hou, Uniform attractors for the three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351. doi: 10.1016/j.jmaa.2014.08.044.

[17]

X. SongF. Liang and J. Wu, Pullback D-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15PP. doi: 10.1186/s13661-016-0654-z.

[18]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[20]

J. Valero, On locally compact attractors of dynamical systems, J. Math. Anal. Appl., 237 (1999), 43-54. doi: 10.1006/jmaa.1999.6446.

[21]

H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, New York, 2007.

[22]

W. Wang and G. Zhou, Remarks on the regularity criterion of the Navier-Stokes equations with nonlinear damping, Math. Probl. Eng., 2015 (2015), Art. ID 310934, 5 pp. doi: 10.1155/2015/310934.

[23]

Z. ZhangX. Wu and M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419. doi: 10.1016/j.jmaa.2010.11.019.

[24]

X. Zhong, Global well-posedness to the incompressible Navier-Stokes equations with damping, Electron. J. Qual. Theory Differ. Equ., 62 (2017), 1-9.

[25]

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Letters, 25 (2012), 1822-1825. doi: 10.1016/j.aml.2012.02.029.

Figure 1.  Flow domain
Figure 2.  Flow velocity $u$ for the steady state in the $xy$-section at $z = 0$. The darker areas mean lower fluid flow speed. The initial velocity $u_{0}$ is identically zero. Left panel parameters: $\alpha = 0.2;\, \beta = 1$. Right panel parameters: $\alpha = 0.5;\, \beta = 1$
Figure 3.  Flow velocity $u$ for the steady state in the $xy$-section at $z = 0$. The darker areas mean lower fluid flow speed. The initial velocity $u_{0}$ is identically zero. Left panel parameters: $\alpha = 0.2;\, \beta = 2$. Right panel parameters: $\alpha = 0.5;\, \beta = 2$
Figure 4.  Flow velocity $u$ for the steady state in the $xy$-section at $z = 0$. The darker areas mean lower fluid flow speed. The initial velocity $u_{0}$ is identically zero. Left panel parameters: $\alpha = 0.2;\, \beta = 4$. Right panel parameters: $\alpha = 0.5;\, \beta = 4$
Figure 5.  Flow velocity $u$ in the $xy$-section at $z = 0$ for $\alpha = 0.2$ and $\beta = 1$. The darker areas mean lower fluid flow speed. The initial velocity $u_{0} = (1, 0, 0)$. Left panel: state when $t = 0.1$. Right panel: steady state ($t$ large enough)
[1]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[2]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[3]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[4]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[5]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[6]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[7]

Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225

[8]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[9]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[10]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[11]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[12]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[13]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[14]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[15]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[16]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[17]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[18]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[19]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[20]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (13)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]