doi: 10.3934/dcdsb.2018276

Convergences of asymptotically autonomous pullback attractors towards semigroup attractors

School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China

Dedicated to Professor Peter Kloeden on his 70th birthday

Received  November 2017 Revised  May 2018 Published  October 2018

For pullback attractors of asymptotically autonomous dynamical systems we study the convergences of their components towards the global attractors of the limiting semigroups. We use some conditions of uniform boundedness of pullback attractors, instead of uniform compactness conditions used in the literature. Both forward convergence and backward convergence are studied.

Citation: Hongyong Cui. Convergences of asymptotically autonomous pullback attractors towards semigroup attractors. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018276
References:
[1]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703.

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Vol. 182, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.

[3]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 3379-3407. doi: 10.3934/dcdsb.2017142.

[4]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, submitted.

[5]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Physica D: Nonlinear Phenomena, 374-375 (2018), 21-34. doi: 10.1016/j.physd.2018.03.002.

[6]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Discrete and Continuous Dynamical Systems - Series S. Page in press.

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225–1268. http://www.sciencedirect.com/science/article/pii/S0022039617301535.

[8]

H. CuiJ. A. LangaY. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, 26 (2018), 493-530. doi: 10.1007/s11228-016-0395-2.

[9]

P. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proceedings of the American Mathematical Society, 144 (2016), 259-268. doi: 10.1090/proc/12735.

[10]

P. E. Kloeden, T. Lorenz and M. Yang, Forward Attractors in Discrete Time Nonautonomous Dynamical Systems, in Differential and Difference Equations with Application, Springer International Publishing, 2015,313-322. doi: 10.1007/978-3-319-32857-7_29.

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire solutions, Journal of Dynamics and Differential Equations, 23 (2011), 437-450. doi: 10.1007/s10884-010-9196-8.

[12]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701. doi: 10.1080/10236198.2011.578070.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc., 2011. doi: 10.1090/surv/176.

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, Journal of Mathematical Analysis and Applications, 425 (2015), 911-918. doi: 10.1016/j.jmaa.2014.12.069.

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, Journal of Mathematical Analysis and Applications, 445 (2017), 513-531. doi: 10.1016/j.jmaa.2016.08.004.

[16]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, Journal of Difference Equations & Applications, 22 (2015), 513-525. doi: 10.1080/10236198.2015.1107550.

[17]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, Journal of Mathematical Analysis and Applications, 459 (2018), 1106-1123. doi: 10.1016/j.jmaa.2017.11.033.

[18]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete and Continuous Dynamical Systems - Series B, 23 (2018), 1535-1557. doi: 10.3934/dcdsb.2018058.

[19]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.

[20]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971.

[21]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb{R}^n$, Frontiers of Mathematics in China, 4 (2009), 563-583. doi: 10.1007/s11464-009-0033-5.

[22]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Analysis: Theory Methods & Applications, 59 (2004), 35-53. doi: 10.1016/j.na.2004.03.035.

[23]

Y. WangL. Wang and W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equations in unbounded domains, Journal of Mathematical Analysis & Applications, 336 (2007), 330-347. doi: 10.1016/j.jmaa.2007.02.081.

[24]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Applied Mathematics Letters, 61 (2016), 73-79. doi: 10.1016/j.aml.2016.05.010.

show all references

References:
[1]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703.

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Vol. 182, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.

[3]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 3379-3407. doi: 10.3934/dcdsb.2017142.

[4]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, submitted.

[5]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Physica D: Nonlinear Phenomena, 374-375 (2018), 21-34. doi: 10.1016/j.physd.2018.03.002.

[6]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Discrete and Continuous Dynamical Systems - Series S. Page in press.

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225–1268. http://www.sciencedirect.com/science/article/pii/S0022039617301535.

[8]

H. CuiJ. A. LangaY. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, 26 (2018), 493-530. doi: 10.1007/s11228-016-0395-2.

[9]

P. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proceedings of the American Mathematical Society, 144 (2016), 259-268. doi: 10.1090/proc/12735.

[10]

P. E. Kloeden, T. Lorenz and M. Yang, Forward Attractors in Discrete Time Nonautonomous Dynamical Systems, in Differential and Difference Equations with Application, Springer International Publishing, 2015,313-322. doi: 10.1007/978-3-319-32857-7_29.

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire solutions, Journal of Dynamics and Differential Equations, 23 (2011), 437-450. doi: 10.1007/s10884-010-9196-8.

[12]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701. doi: 10.1080/10236198.2011.578070.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc., 2011. doi: 10.1090/surv/176.

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, Journal of Mathematical Analysis and Applications, 425 (2015), 911-918. doi: 10.1016/j.jmaa.2014.12.069.

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, Journal of Mathematical Analysis and Applications, 445 (2017), 513-531. doi: 10.1016/j.jmaa.2016.08.004.

[16]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, Journal of Difference Equations & Applications, 22 (2015), 513-525. doi: 10.1080/10236198.2015.1107550.

[17]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, Journal of Mathematical Analysis and Applications, 459 (2018), 1106-1123. doi: 10.1016/j.jmaa.2017.11.033.

[18]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete and Continuous Dynamical Systems - Series B, 23 (2018), 1535-1557. doi: 10.3934/dcdsb.2018058.

[19]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.

[20]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971.

[21]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb{R}^n$, Frontiers of Mathematics in China, 4 (2009), 563-583. doi: 10.1007/s11464-009-0033-5.

[22]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Analysis: Theory Methods & Applications, 59 (2004), 35-53. doi: 10.1016/j.na.2004.03.035.

[23]

Y. WangL. Wang and W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equations in unbounded domains, Journal of Mathematical Analysis & Applications, 336 (2007), 330-347. doi: 10.1016/j.jmaa.2007.02.081.

[24]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Applied Mathematics Letters, 61 (2016), 73-79. doi: 10.1016/j.aml.2016.05.010.

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018194

[3]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[4]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[5]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[6]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[8]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[9]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[10]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[11]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[12]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[14]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[15]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[16]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[17]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[18]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[19]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[20]

Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018278

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]