• Previous Article
    Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates
  • DCDS-B Home
  • This Issue
  • Next Article
    Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations
doi: 10.3934/dcdsb.2018270

Nondegenerate multistationarity in small reaction networks

1. 

Texas A&M University, Department of Mathematics, Mailstop 3368, College Station, TX 77843-3368, USA

2. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

* Corresponding author: Anne Shiu

Received  January 2018 Revised  May 2018 Published  October 2018

Much attention has been focused in recent years on the following algebraic problem arising from applications: which chemical reaction networks, when taken with mass-action kinetics, admit multiple positive steady states? The interest behind this question is in steady states that are stable. As a step toward this difficult question, here we address the question of multiple nondegenerate positive steady states. Mathematically, this asks whether certain families of parametrized, real, sparse polynomial systems ever admit multiple positive real roots that are simple. Our main results settle this problem for certain types of small networks, and our techniques may point the way forward for larger networks.

Citation: Anne Shiu, Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018270
References:
[1]

M. Banaji and C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks, SIAM J. Appl. Math., 78 (2018), 1105-1130, arXiv: 1608.08400. doi: 10.1137/16M1103506.

[2]

J. L. Cherry and F. R. Adler, How to make a biological switch, J. Theoret. Biol., 203 (2000), 117-133. doi: 10.1006/jtbi.2000.1068.

[3]

C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13(2017), e1005751. doi: 10.1371/journal.pcbi.1005751.

[4]

C. Conradi and A. Shiu, Dynamics of post-translational modification systems: Recent progress and future challenges, Biophys. J., 114 (2018), 507-515. doi: 10.1016/j.bpj.2017.11.3787.

[5]

J. P. DexterT. Dasgupta and J. Gunawardena, Invariants reveal multiple forms of robustness in bifunctional enzyme systems, Integr. Biol., 7 (2015), 883-894. doi: 10.1039/C5IB00009B.

[6]

A. Dickenstein, Biochemical reaction networks: An invitation for algebraic geometers, in Mathematical Congress of the Americas, vol. 656 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2016, 65-83. doi: 10.1090/conm/656/13076.

[7]

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors Ⅰ. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268. doi: 10.1016/0009-2509(87)80099-4.

[8]

B. FélixA. Shiu and Z. Woodstock, Analyzing multistationarity in chemical reaction networks using the determinant optimization method, Appl. Math. Comput., 287/288 (2016), 60-73. doi: 10.1016/j.amc.2016.04.030.

[9]

K. Gatermann and B. Huber, A family of sparse polynomial systems arising in chemical reaction systems, J. Symb. Comput., 33 (2002), 275-305. doi: 10.1006/jsco.2001.0512.

[10]

I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994. doi: 10.1007/978-0-8176-4771-1.

[11]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797. doi: 10.1137/130928170.

[12]

D. J. Grabiner, Descartes' rule of signs: Another construction, Amer. Math. Monthly, 106 (1999), 854-856. doi: 10.1080/00029890.1999.12005131.

[13]

E. GrossH. A. HarringtonZ. Rosen and B. Sturmfels, Algebraic systems biology: A case study for the {Wnt} pathway, Bull. Math. Biol., 78 (2016), 21-51. doi: 10.1007/s11538-015-0125-1.

[14]

K. L. Ho and H. A. Harrington, Bistability in apoptosis by receptor clustering, PLoS Comput. Biol., 6 (2010), e1000956, 9pp. doi: 10.1371/journal.pcbi.1000956.

[15]

B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51 (2013), 153-178. doi: 10.1007/s10910-012-0072-0.

[16]

B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), 47-67. doi: 10.1051/mmnp/201510504.

[17]

B. Joshi and A. Shiu, Which small reaction networks are multistationary?, SIAM J. Appl. Dyn. Syst., 16 (2017), 802-833. doi: 10.1137/16M1069705.

[18]

M. P. Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650-1682. doi: 10.1137/17M1113722.

[19]

Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, vol. 26 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, Oxford, 2002.

[20]

M. A. Sweeney, Conditions for solvability in chemical reaction networks at quasi-steady-state, Preprint, arXiv: 1712.05533.

[21]

T. Theobald and T. de Wolff, Norms of roots of trinomials, Math. Ann., 366 (2016), 219-247. doi: 10.1007/s00208-015-1323-8.

[22]

V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, vol. 98 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992, Translated from the Russian by B. Goldfarb.

show all references

References:
[1]

M. Banaji and C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks, SIAM J. Appl. Math., 78 (2018), 1105-1130, arXiv: 1608.08400. doi: 10.1137/16M1103506.

[2]

J. L. Cherry and F. R. Adler, How to make a biological switch, J. Theoret. Biol., 203 (2000), 117-133. doi: 10.1006/jtbi.2000.1068.

[3]

C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13(2017), e1005751. doi: 10.1371/journal.pcbi.1005751.

[4]

C. Conradi and A. Shiu, Dynamics of post-translational modification systems: Recent progress and future challenges, Biophys. J., 114 (2018), 507-515. doi: 10.1016/j.bpj.2017.11.3787.

[5]

J. P. DexterT. Dasgupta and J. Gunawardena, Invariants reveal multiple forms of robustness in bifunctional enzyme systems, Integr. Biol., 7 (2015), 883-894. doi: 10.1039/C5IB00009B.

[6]

A. Dickenstein, Biochemical reaction networks: An invitation for algebraic geometers, in Mathematical Congress of the Americas, vol. 656 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2016, 65-83. doi: 10.1090/conm/656/13076.

[7]

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors Ⅰ. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268. doi: 10.1016/0009-2509(87)80099-4.

[8]

B. FélixA. Shiu and Z. Woodstock, Analyzing multistationarity in chemical reaction networks using the determinant optimization method, Appl. Math. Comput., 287/288 (2016), 60-73. doi: 10.1016/j.amc.2016.04.030.

[9]

K. Gatermann and B. Huber, A family of sparse polynomial systems arising in chemical reaction systems, J. Symb. Comput., 33 (2002), 275-305. doi: 10.1006/jsco.2001.0512.

[10]

I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994. doi: 10.1007/978-0-8176-4771-1.

[11]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797. doi: 10.1137/130928170.

[12]

D. J. Grabiner, Descartes' rule of signs: Another construction, Amer. Math. Monthly, 106 (1999), 854-856. doi: 10.1080/00029890.1999.12005131.

[13]

E. GrossH. A. HarringtonZ. Rosen and B. Sturmfels, Algebraic systems biology: A case study for the {Wnt} pathway, Bull. Math. Biol., 78 (2016), 21-51. doi: 10.1007/s11538-015-0125-1.

[14]

K. L. Ho and H. A. Harrington, Bistability in apoptosis by receptor clustering, PLoS Comput. Biol., 6 (2010), e1000956, 9pp. doi: 10.1371/journal.pcbi.1000956.

[15]

B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51 (2013), 153-178. doi: 10.1007/s10910-012-0072-0.

[16]

B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), 47-67. doi: 10.1051/mmnp/201510504.

[17]

B. Joshi and A. Shiu, Which small reaction networks are multistationary?, SIAM J. Appl. Dyn. Syst., 16 (2017), 802-833. doi: 10.1137/16M1069705.

[18]

M. P. Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650-1682. doi: 10.1137/17M1113722.

[19]

Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, vol. 26 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, Oxford, 2002.

[20]

M. A. Sweeney, Conditions for solvability in chemical reaction networks at quasi-steady-state, Preprint, arXiv: 1712.05533.

[21]

T. Theobald and T. de Wolff, Norms of roots of trinomials, Math. Ann., 366 (2016), 219-247. doi: 10.1007/s00208-015-1323-8.

[22]

V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, vol. 98 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992, Translated from the Russian by B. Goldfarb.

Figure 1.  Stoichiometric compatibility classes for the network in Example 2.2.
Table 1.  Summary of results on nondegenerate multistationarity for small reactions. Here r denotes the number of reactions and s the number of species. See Section 2.
Network propertyNondegenerately multistationary?
Network with only 1 species ($s=1$)If and only if some subnetwork is 2-alternating (Proposition 1.1) [17]
Network consists of 1 reaction ($r=1$) or 1 reversible-reaction pairNo (Proposition 1.2) [17]
Network consists of 2 reactions ($r=2$)See Proposition 1.3 [17]
$r+s \leq 3$No ([17,Corollary 3.8])
$s=2$ and 1 irreversible reaction and 1 reversible-reaction pairSee Theorem 3.5
$s=2$ and 2 reversible-reaction pairsSee Theorem 3.6
Network propertyNondegenerately multistationary?
Network with only 1 species ($s=1$)If and only if some subnetwork is 2-alternating (Proposition 1.1) [17]
Network consists of 1 reaction ($r=1$) or 1 reversible-reaction pairNo (Proposition 1.2) [17]
Network consists of 2 reactions ($r=2$)See Proposition 1.3 [17]
$r+s \leq 3$No ([17,Corollary 3.8])
$s=2$ and 1 irreversible reaction and 1 reversible-reaction pairSee Theorem 3.5
$s=2$ and 2 reversible-reaction pairsSee Theorem 3.6
[1]

Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 475-502. doi: 10.3934/mbe.2011.8.475

[2]

Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413

[3]

Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769

[4]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[5]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[6]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[7]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[8]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

József Z. Farkas, Peter Hinow. Steady states in hierarchical structured populations with distributed states at birth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2671-2689. doi: 10.3934/dcdsb.2012.17.2671

[11]

Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic & Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013

[12]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[13]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[14]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[15]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[16]

Congming Li, Eric S. Wright. Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics. Communications on Pure & Applied Analysis, 2002, 1 (1) : 77-84. doi: 10.3934/cpaa.2002.1.77

[17]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[18]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[19]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[20]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (1)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]