• Previous Article
    Convergences of asymptotically autonomous pullback attractors towards semigroup attractors
  • DCDS-B Home
  • This Issue
  • Next Article
    Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty
doi: 10.3934/dcdsb.2018268

Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/Tarfia s/n, 41012 Sevilla, Spain

2. 

Departament of Engineering, University Niccolò Cusano, Via Don Carlo Gnocchi, 3 00166, Roma, Italy

3. 

Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121, Ancona (AN), Italy

Received  January 2018 Revised  May 2018 Published  October 2018

Fund Project: This work has been partially supported by FEDER and the Spanish Ministerio de Economía y Competitividad project MTM2015-63723-P and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492

In this article we consider a model introduced by Ucar in order to simply describe chaotic behaviour with a one dimensional ODE containing a constant delay. We study the bifurcation problem of the equilibria and we obtain an approximation of the periodic orbits generated by the Hopf bifurcation. Moreover, we propose and analyse a more general model containing distributed time delay. Finally, we propose some ideas for further study. All the theoretical results are supported and illustrated by numerical simulations.

Citation: Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018268
References:
[1]

S. Bhalekar, Dynamics of fractional order complex Ucar system, Studies in Computational Intelligence, 688 (2017), 747-771.

[2]

S. Bhalekar, Stability and bifurcation analysis of a generalised scalar delay differential equation, Chaos, 26 (2016), 084306, 7pp. doi: 10.1063/1.4958923.

[3]

S. Bhalekar, On the Ucar prototype model with incommensurate delays, Signal, Image and Video Processing, 8 (2014), 635-639. doi: 10.1007/s11760-013-0595-2.

[4]

T. CaraballoR. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. Pure and Appl. Anal., 17 (2018), 2703-2727. doi: 10.3934/cpaa.2018128.

[5]

C. W. Eurich, A. Thiel and L. Fahse, Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94 (2005), 158104. doi: 10.1103/PhysRevLett.94.158104.

[6]

E. KaraogluE. Yilmaz and H. Merdan, Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays, Nonlinear Dyn, 85 (2016), 1039-1051. doi: 10.1007/s11071-016-2742-0.

[7]

E. KaraogluE. Yilmaz and H. Merdan, Stability and bifurcation analysis of two-neuron network with discrete and distributed delays, Neurocomputing, 182 (2016), 102-110. doi: 10.1016/j.neucom.2015.12.006.

[8]

C. LiX. Liao and J. Yu, Hopf bifurcation in a prototype delayed system, Chaos, Solitons and Fractals, 19 (2004), 779-787. doi: 10.1016/S0960-0779(03)00206-6.

[9]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002.

[10]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041.

[11]

X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580.

[12]

N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978.

[13]

N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University. 1989.

[14]

A. Matsumoto and F. Szidarovszky, Delay dynamics in a classical IS-LM model with tax collections, Metroeconomica, 67 (2016), 667-697. doi: 10.1111/meca.12128.

[15]

A. Matsumoto and F. Szidarovszky, Dynamic monopoly with multiple continuously distributed time delays, Mathematics and Computers in Simulation, 108 (2015), 99-118. doi: 10.1016/j.matcom.2014.01.003.

[16]

A. Matsumoto and F. Szidarovszky, Boundedly rational monopoly with single continuously distributed time delay, Nonlinear Economic Dynamics and Financial Modelling, Essays in Honour of Carl Chiarella, May 2014, Pages 83-107.

[17]

A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981.

[18]

A. Ucar, A prototype model for chaos studies, International Journal of Engineering Science, 40 (2001), 251-258. doi: 10.1016/S0020-7225(01)00060-X.

[19]

A. Ucar, On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Solitons and Fractals, 16 (2003), 187-194.

show all references

References:
[1]

S. Bhalekar, Dynamics of fractional order complex Ucar system, Studies in Computational Intelligence, 688 (2017), 747-771.

[2]

S. Bhalekar, Stability and bifurcation analysis of a generalised scalar delay differential equation, Chaos, 26 (2016), 084306, 7pp. doi: 10.1063/1.4958923.

[3]

S. Bhalekar, On the Ucar prototype model with incommensurate delays, Signal, Image and Video Processing, 8 (2014), 635-639. doi: 10.1007/s11760-013-0595-2.

[4]

T. CaraballoR. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. Pure and Appl. Anal., 17 (2018), 2703-2727. doi: 10.3934/cpaa.2018128.

[5]

C. W. Eurich, A. Thiel and L. Fahse, Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94 (2005), 158104. doi: 10.1103/PhysRevLett.94.158104.

[6]

E. KaraogluE. Yilmaz and H. Merdan, Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays, Nonlinear Dyn, 85 (2016), 1039-1051. doi: 10.1007/s11071-016-2742-0.

[7]

E. KaraogluE. Yilmaz and H. Merdan, Stability and bifurcation analysis of two-neuron network with discrete and distributed delays, Neurocomputing, 182 (2016), 102-110. doi: 10.1016/j.neucom.2015.12.006.

[8]

C. LiX. Liao and J. Yu, Hopf bifurcation in a prototype delayed system, Chaos, Solitons and Fractals, 19 (2004), 779-787. doi: 10.1016/S0960-0779(03)00206-6.

[9]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002.

[10]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041.

[11]

X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580.

[12]

N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978.

[13]

N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University. 1989.

[14]

A. Matsumoto and F. Szidarovszky, Delay dynamics in a classical IS-LM model with tax collections, Metroeconomica, 67 (2016), 667-697. doi: 10.1111/meca.12128.

[15]

A. Matsumoto and F. Szidarovszky, Dynamic monopoly with multiple continuously distributed time delays, Mathematics and Computers in Simulation, 108 (2015), 99-118. doi: 10.1016/j.matcom.2014.01.003.

[16]

A. Matsumoto and F. Szidarovszky, Boundedly rational monopoly with single continuously distributed time delay, Nonlinear Economic Dynamics and Financial Modelling, Essays in Honour of Carl Chiarella, May 2014, Pages 83-107.

[17]

A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981.

[18]

A. Ucar, A prototype model for chaos studies, International Journal of Engineering Science, 40 (2001), 251-258. doi: 10.1016/S0020-7225(01)00060-X.

[19]

A. Ucar, On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Solitons and Fractals, 16 (2003), 187-194.

Figure 1.  The solution starting on the left hand side of $O$ converges to $P_- = -1$, while that starting on the right hand side of $O$ converges to $P_+ = 1$.
Figure 2.  The solution starting on the left hand side of $O$ converges to a limit cycle around $P_-$, while that starting on the right hand side of $O$ converges to a limit cycle around $P_+$.
Figure 3.  The solution $x(t)$ and the graph of $(x(t),x'(t))$ for $\delta = \varepsilon = 1$ and $\tau = 1.72$. The attractor appears to be chaotic.
Figure 4.  The numerical solution (in red) together with its approximation (in blue) given by (20).
Figure 5.  For $m = 1$, the fixed points $P_\pm$ are locally asymptotically stable for all $T\geq0$.
Figure 6.  For m = 2 and $T = 0.9<T_*$ the fixed points $P_\pm$ are locally asymptotically stable.
Figure 7.  For m = 2 and $T = 2>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.
Figure 8.  For $m = 3$ and $T = 0.6<T_*$ the fixed points $P_\pm$ are locally asymptotically stabel
Figure 9.  For $m = 3$ and $T = 0.7>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.
Figure 10.  The solution of sytem (34) for $T = 2$ and $\tau = 5$. Numerical simulations suggest the evidence of a chaotic behaviour.
Figure 11.  The solution of sytem (36) for $T = 1.6$ and $\tau = 1.14$. Numerical simulations suggest the evidence of a chaotic behaviour, this is supported by the presence of a strange attractor similar to the famous Lorenz attractor.
[1]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[2]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[3]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[4]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[5]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[6]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[7]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[8]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018312

[9]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[10]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[11]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[12]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[13]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[14]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[15]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[16]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[17]

Pasquale Palumbo, Simona Panunzi, Andrea De Gaetano. Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 399-424. doi: 10.3934/dcdsb.2007.7.399

[18]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[19]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[20]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]