doi: 10.3934/dcdsb.2018258

Confinement of a hot temperature patch in the modified SQG model

Department of Statistical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Ital

 

Received  July 2017 Revised  February 2018 Published  October 2018

In this paper we study the time evolution of a temperature patch in $\mathbb{R}^2$ according to the modified Surface Quasi-Geostrophic (SQG) patch equation. In particular we give a temporal estimate on the growth of the support, providing a rigorous proof of the confinement of a hot patch of temperature in absence of external forcing, under the quasi-geostrophic approximation.

Citation: Roberto Garra. Confinement of a hot temperature patch in the modified SQG model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018258
References:
[1]

C. Bucur and A. L. Karakhanyan, Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proceedings of the American Mathematical Society, 145 (2017), 637-651. doi: 10.1090/proc/13227.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[3]

G. CavallaroR. Garra and C. Marchioro, Localization and stability of active scalar flows, Riv. Mat. Univ. Parma, 4 (2013), 175-196.

[4]

D. ChaeP. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the Surface Quasi-geostrophic equations, Arch. Rational Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5.

[5]

P. ConstantinD. Cordoba and J. Wu, On the Critical Dissipative Quasi-geostrophic Equation, Indiana University mathematics journal, 50 (2001), 97-107. doi: 10.1512/iumj.2008.57.3629.

[6]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.

[7]

A. CordobaD. Cordoba and F. Gancedo, Uniqueness for SQG patch solutions, Transactions of the American Mathematical Society, Series B, 5 (2018), 1-31. doi: 10.1090/btran/20.

[8]

D. CordobaM. A. FontelosA. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proceedings of the National Academy of Sciences, 102 (2005), 5949-5952. doi: 10.1073/pnas.0501977102.

[9]

F. Gancedo, Existence for the alpha-patch model and the QG sharp front in Sobolev spaces, Advances in Mathematics, 217 (2008), 2569-2598. doi: 10.1016/j.aim.2007.10.010.

[10]

I. M. HeldR. T. PierrehumbertS. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech., 282 (1995), 1-20. doi: 10.1017/S0022112095000012.

[11]

D. IftimieT. C. Sideris and P. Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations, 24 (1999), 1709-1730.

[12]

D. Iftimie, Evolution de Tourbillon à Support Compact, Actes du Colloque de Saint-Jean-de-Monts, 1999.

[13]

T. Iwayama and T. Watanabe, Green's function for a generalized two-dimensional fluid, Physical Review E, 82 (2010), 036307.

[14]

A. Kiselev, L. Ryzhik, Y. Yao and A. Zlatos, Finite time singularity formation for the modified SQG patch equation, Ann. of Math. (2), 184 (2016), 909–948, arXiv:1508.07613. doi: 10.4007/annals.2016.184.3.7.

[15]

D. Li, Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions, Nonlinearity, 22 (2009), 1639-1651. doi: 10.1088/0951-7715/22/7/008.

[16]

A. J. Majda and E. Tabak, A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D, 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5.

[17]

A. Mancho, Numerical studies on the self-similar collapse of the alpha-patches problem, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 152-166. doi: 10.1016/j.cnsns.2015.02.009.

[18]

C. Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys., 164 (1994), 507-524.

[19]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 1987.

[20]

R. T. PierrehumbertI. M. Held and K. L. Swanson, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons and Fractals, 4 (1994), 1111-1116.

[21]

J. L. Rodrigo, On the evolution of sharp Fronts for the Quasi-Geostrophic equation, Commun. Pure and Appl. Math., 58 (2005), 821-866. doi: 10.1002/cpa.20059.

[22]

P. Serfati, Borne en temps des caractéristiques de l'équation d'Euler 2D á tourbillon positif et localisation pour le modéle point-vortex, Preprint.

show all references

References:
[1]

C. Bucur and A. L. Karakhanyan, Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proceedings of the American Mathematical Society, 145 (2017), 637-651. doi: 10.1090/proc/13227.

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[3]

G. CavallaroR. Garra and C. Marchioro, Localization and stability of active scalar flows, Riv. Mat. Univ. Parma, 4 (2013), 175-196.

[4]

D. ChaeP. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the Surface Quasi-geostrophic equations, Arch. Rational Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5.

[5]

P. ConstantinD. Cordoba and J. Wu, On the Critical Dissipative Quasi-geostrophic Equation, Indiana University mathematics journal, 50 (2001), 97-107. doi: 10.1512/iumj.2008.57.3629.

[6]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.

[7]

A. CordobaD. Cordoba and F. Gancedo, Uniqueness for SQG patch solutions, Transactions of the American Mathematical Society, Series B, 5 (2018), 1-31. doi: 10.1090/btran/20.

[8]

D. CordobaM. A. FontelosA. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proceedings of the National Academy of Sciences, 102 (2005), 5949-5952. doi: 10.1073/pnas.0501977102.

[9]

F. Gancedo, Existence for the alpha-patch model and the QG sharp front in Sobolev spaces, Advances in Mathematics, 217 (2008), 2569-2598. doi: 10.1016/j.aim.2007.10.010.

[10]

I. M. HeldR. T. PierrehumbertS. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech., 282 (1995), 1-20. doi: 10.1017/S0022112095000012.

[11]

D. IftimieT. C. Sideris and P. Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations, 24 (1999), 1709-1730.

[12]

D. Iftimie, Evolution de Tourbillon à Support Compact, Actes du Colloque de Saint-Jean-de-Monts, 1999.

[13]

T. Iwayama and T. Watanabe, Green's function for a generalized two-dimensional fluid, Physical Review E, 82 (2010), 036307.

[14]

A. Kiselev, L. Ryzhik, Y. Yao and A. Zlatos, Finite time singularity formation for the modified SQG patch equation, Ann. of Math. (2), 184 (2016), 909–948, arXiv:1508.07613. doi: 10.4007/annals.2016.184.3.7.

[15]

D. Li, Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions, Nonlinearity, 22 (2009), 1639-1651. doi: 10.1088/0951-7715/22/7/008.

[16]

A. J. Majda and E. Tabak, A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D, 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5.

[17]

A. Mancho, Numerical studies on the self-similar collapse of the alpha-patches problem, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 152-166. doi: 10.1016/j.cnsns.2015.02.009.

[18]

C. Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys., 164 (1994), 507-524.

[19]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 1987.

[20]

R. T. PierrehumbertI. M. Held and K. L. Swanson, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons and Fractals, 4 (1994), 1111-1116.

[21]

J. L. Rodrigo, On the evolution of sharp Fronts for the Quasi-Geostrophic equation, Commun. Pure and Appl. Math., 58 (2005), 821-866. doi: 10.1002/cpa.20059.

[22]

P. Serfati, Borne en temps des caractéristiques de l'équation d'Euler 2D á tourbillon positif et localisation pour le modéle point-vortex, Preprint.

[1]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[2]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[3]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[4]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[5]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[6]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[9]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[10]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[11]

Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial & Management Optimization, 2010, 6 (2) : 315-331. doi: 10.3934/jimo.2010.6.315

[12]

Nakao Hayashi, Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the modified witham equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1407-1448. doi: 10.3934/cpaa.2018069

[13]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[14]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[15]

Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333

[16]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[17]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[18]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[19]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic & Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[20]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

2017 Impact Factor: 0.972

Article outline

[Back to Top]