doi: 10.3934/dcdsb.2018253

A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients

Technische Universität Berlin, Institut für Mathematik, Secr. MA 5-3, Straße des 17. Juni 136, DE-10623 Berlin, Germany

Received  September 2017 Revised  February 2018 Published  August 2018

Fund Project: The authors are supported by the German Research Foundation through FOR 2402

In this paper a drift-randomized Milstein method is introduced for the numerical solution of non-autonomous stochastic differential equations with non-differentiable drift coefficient functions. Compared to standard Milstein-type methods we obtain higher order convergence rates in the $ L^p(Ω) $ and almost sure sense. An important ingredient in the error analysis are randomized quadrature rules for Hölder continuous stochastic processes. By this we avoid the use of standard arguments based on the Itō-Taylor expansion which are typically applied in error estimates of the classical Milstein method but require additional smoothness of the drift and diffusion coefficient functions. We also discuss the optimality of our convergence rates. Finally, the question of implementation is addressed in a numerical experiment.

Citation: Raphael Kruse, Yue Wu. A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018253
References:
[1]

W.-J. Beyn and R. Kruse, Two-sided error estimates for the stochastic theta method, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 389-407, URL http://dx.doi.org/10.3934/dcdsb.2010.14.389. doi: 10.3934/dcdsb.2010.14.389.

[2]

D. L. Burkholder, Martingale transforms, Ann. Math. Statist., 37 (1966), 1494-1504. doi: 10.1214/aoms/1177699141.

[3]

J. M. C. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), vol. 25 of Lecture Notes in Control and Information Sci., Springer, Berlin, 1980,162-171.

[4]

T. Daun, On the randomized solution of initial value problems, J. Complexity, 27 (2011), 300-311, URL http://dx.doi.org/10.1016/j.jco.2010.07.002. doi: 10.1016/j.jco.2010.07.002.

[5]

E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, TU Berlin, FB Mathematik, Preprint.

[6]

J. G. Gaines and T. J. Lyons, Random generation of stochastic area integrals, SIAM J. Appl. Math., 54 (1994), 1132-1146, URL http://dx.doi.org/10.1137/S0036139992235706. doi: 10.1137/S0036139992235706.

[7]

M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multidimensional SDEs without Lévy area simulation, Ann. Appl. Probab., 24 (2014), 1585-1620, URL http://dx.doi.org/10.1214/13-AAP957. doi: 10.1214/13-AAP957.

[8]

I. Gyöngy, A note on Euler's approximations, Potential Anal. , 8 (1998), 205-216, URL http://dx.doi.org/10.1023/A:1008605221617.

[9]

S. Haber, A modified Monte-Carlo quadrature, Math. Comp., 20 (1966), 361-368. doi: 10.1090/S0025-5718-1966-0210285-0.

[10]

S. Haber, A modified Monte-Carlo quadrature. Ⅱ, Math. Comp., 21 (1967), 388-397. doi: 10.1090/S0025-5718-1967-0234606-9.

[11]

S. Heinrich and B. Milla, The randomized complexity of initial value problems, J. Complexity, 24 (2008), 77-88. doi: 10.1016/j.jco.2007.09.002.

[12]

M. Hutzenthaler, A. Jentzen and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 1563-1576, URL http://dx.doi.org/10.1098/rspa.2010.0348. doi: 10.1098/rspa.2010.0348.

[13]

A. Jentzen and A. Neuenkirch, A random Euler scheme for Carathéodory differential equations, J. Comput. Appl. Math., 224 (2009), 346-359, URL http://dx.doi.org/10.1016/j.cam.2008.05.060. doi: 10.1016/j.cam.2008.05.060.

[14]

B. Kacewicz, Optimal solution of ordinary differential equations, J. Complexity, 3 (1987), 451-465, URL http://dx.doi.org/10.1016/0885-064X(87)90011-2. doi: 10.1016/0885-064X(87)90011-2.

[15]

B. Kacewicz, Asymptotic setting (revisited): Analysis of a boundary-value problem and a relation to a classical approximation result, J. Complexity, 20 (2004), 796-806, URL https://doi.org/10.1016/j.jco.2003.08.006. doi: 10.1016/j.jco.2003.08.006.

[16]

B. Kacewicz, Almost optimal solution of initial-value problems by randomized and quantum algorithms, J. Complexity, 22 (2006), 676-690, URL http://dx.doi.org/10.1016/j.jco.2006.03.001. doi: 10.1016/j.jco.2006.03.001.

[17]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, New York, 1991, URL https://doi.org/10.1007/978-1-4612-0949-2. doi: 10.1007/978-1-4612-0949-2.

[18]

P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS J. Comput. Math., 10 (2007), 235-253, URL http://dx.doi.org/10.1112/S1461157000001388. doi: 10.1112/S1461157000001388.

[19]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd edition, Springer, Berlin, 1999. doi: 10.1007/978-3-662-12616-5.

[20]

R. Kruse, Characterization of bistability for stochastic multistep methods, BIT, 52 (2012), 109-140, URL http://dx.doi.org/10.1007/s10543-011-0341-5. doi: 10.1007/s10543-011-0341-5.

[21]

R. Kruse, Consistency and stability of a Milstein-Galerkin finite element scheme for semilinear SPDE, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 471-516, URL http://dx.doi.org/10.1007/s40072-014-0037-3. doi: 10.1007/s40072-014-0037-3.

[22]

R. Kruse and Y. Wu, Error analysis of randomized Runge-Kutta methods for differential equations with time-irregular coefficients, Comput. Methods Appl. Math., 17 (2017), 479-498. doi: 10.1515/cmam-2016-0048.

[23]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing Limited, Chichester, 2008, URL http://dx.doi.org/10.1533/9780857099402. doi: 10.1533/9780857099402.

[24]

G. N. Milstein, Approximate integration of stochastic differential equations, Teor. Verojatnost. i Primenen., 19 (1974), 583-588, In Russian.

[25]

G. N. Milstein, Approximate integration of stochastic differential equations, Theory Probab. Appl., 19 (1975), 557-562, Translated by K. Durr.

[26]

G. N. Milstein, Numerical Integration of Stochastic Differential Equations, vol. 313 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995, Translated and revised from the 1988 Russian original. doi: 10.1007/978-94-015-8455-5.

[27]

G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Scientific Computation, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10063-9.

[28]

P. M. Morkisz and P. Przyby lowicz, Optimal pointwise approximation of SDE's from inexact information, J. Comput. Appl. Math., 324 (2017), 85-100, URL http://dx.doi.org/10.1016/j.cam.2017.04.023. doi: 10.1016/j.cam.2017.04.023.

[29]

P. Przyby lowicz, Minimal asymptotic error for one-point approximation of SDEs with timeirregular coefficients, J. Comput. Appl. Math., 282 (2015), 98-110, URL http://dx.doi.org/10.1016/j.cam.2015.01.003. doi: 10.1016/j.cam.2015.01.003.

[30]

P. Przyby lowicz, Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting, Appl. Math. Comput., 270 (2015), 441-457, URL http://dx.doi.org/10.1016/j.amc.2015.08.055. doi: 10.1016/j.amc.2015.08.055.

[31]

P. Przyby lowicz and P. Morkisz, Strong approximation of solutions of stochastic differential equations with time-irregular coefficients via randomized Euler algorithm, Appl. Numer. Math., 78 (2014), 80-94, URL http://dx.doi.org/10.1016/j.apnum.2013.12.003. doi: 10.1016/j.apnum.2013.12.003.

[32]

T. Rydén and M. Wiktorsson, On the simulation of iterated Itô integrals, Stochastic Process. Appl., 91 (2001), 151-168. doi: 10.1016/S0304-4149(00)00053-3.

[33]

M. N. Spijker, Stability and Convergence of Finite-Difference Methods, vol. 1968 of Doctoral dissertation, University of Leiden, Rijksuniversiteit te Leiden, Leiden, 1968.

[34]

M. N. Spijker, On the structure of error estimates for finite-difference methods, Numer. Math., 18 (1971/72), 73-100. doi: 10.1007/BF01398460.

[35]

G. Stengle, Numerical methods for systems with measurable coefficients, Appl. Math. Lett., 3 (1990), 25-29, URL http://dx.doi.org/10.1016/0893-9659(90)90040-I. doi: 10.1016/0893-9659(90)90040-I.

[36]

G. Stengle, Error analysis of a randomized numerical method, Numer. Math. , 70 (1995), 119-128, URL http://dx.doi.org/10.1007/s002110050113. doi: 10.1007/s002110050113.

[37]

F. Stummel, Approximation Methods in Analysis, Matematisk Institut, Aarhus Universitet, Aarhus, 1973, Lectures delivered during the spring term, 1973, Lecture Notes Series, No. 35.

[38]

J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, Information-based Complexity, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1988, With contributions by A. G. Werschulz and T. Boult.

[39]

M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions, Ann. Appl. Probab., 11 (2001), 470-487. doi: 10.1214/aoap/1015345301.

show all references

References:
[1]

W.-J. Beyn and R. Kruse, Two-sided error estimates for the stochastic theta method, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 389-407, URL http://dx.doi.org/10.3934/dcdsb.2010.14.389. doi: 10.3934/dcdsb.2010.14.389.

[2]

D. L. Burkholder, Martingale transforms, Ann. Math. Statist., 37 (1966), 1494-1504. doi: 10.1214/aoms/1177699141.

[3]

J. M. C. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), vol. 25 of Lecture Notes in Control and Information Sci., Springer, Berlin, 1980,162-171.

[4]

T. Daun, On the randomized solution of initial value problems, J. Complexity, 27 (2011), 300-311, URL http://dx.doi.org/10.1016/j.jco.2010.07.002. doi: 10.1016/j.jco.2010.07.002.

[5]

E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, TU Berlin, FB Mathematik, Preprint.

[6]

J. G. Gaines and T. J. Lyons, Random generation of stochastic area integrals, SIAM J. Appl. Math., 54 (1994), 1132-1146, URL http://dx.doi.org/10.1137/S0036139992235706. doi: 10.1137/S0036139992235706.

[7]

M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multidimensional SDEs without Lévy area simulation, Ann. Appl. Probab., 24 (2014), 1585-1620, URL http://dx.doi.org/10.1214/13-AAP957. doi: 10.1214/13-AAP957.

[8]

I. Gyöngy, A note on Euler's approximations, Potential Anal. , 8 (1998), 205-216, URL http://dx.doi.org/10.1023/A:1008605221617.

[9]

S. Haber, A modified Monte-Carlo quadrature, Math. Comp., 20 (1966), 361-368. doi: 10.1090/S0025-5718-1966-0210285-0.

[10]

S. Haber, A modified Monte-Carlo quadrature. Ⅱ, Math. Comp., 21 (1967), 388-397. doi: 10.1090/S0025-5718-1967-0234606-9.

[11]

S. Heinrich and B. Milla, The randomized complexity of initial value problems, J. Complexity, 24 (2008), 77-88. doi: 10.1016/j.jco.2007.09.002.

[12]

M. Hutzenthaler, A. Jentzen and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 1563-1576, URL http://dx.doi.org/10.1098/rspa.2010.0348. doi: 10.1098/rspa.2010.0348.

[13]

A. Jentzen and A. Neuenkirch, A random Euler scheme for Carathéodory differential equations, J. Comput. Appl. Math., 224 (2009), 346-359, URL http://dx.doi.org/10.1016/j.cam.2008.05.060. doi: 10.1016/j.cam.2008.05.060.

[14]

B. Kacewicz, Optimal solution of ordinary differential equations, J. Complexity, 3 (1987), 451-465, URL http://dx.doi.org/10.1016/0885-064X(87)90011-2. doi: 10.1016/0885-064X(87)90011-2.

[15]

B. Kacewicz, Asymptotic setting (revisited): Analysis of a boundary-value problem and a relation to a classical approximation result, J. Complexity, 20 (2004), 796-806, URL https://doi.org/10.1016/j.jco.2003.08.006. doi: 10.1016/j.jco.2003.08.006.

[16]

B. Kacewicz, Almost optimal solution of initial-value problems by randomized and quantum algorithms, J. Complexity, 22 (2006), 676-690, URL http://dx.doi.org/10.1016/j.jco.2006.03.001. doi: 10.1016/j.jco.2006.03.001.

[17]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, New York, 1991, URL https://doi.org/10.1007/978-1-4612-0949-2. doi: 10.1007/978-1-4612-0949-2.

[18]

P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS J. Comput. Math., 10 (2007), 235-253, URL http://dx.doi.org/10.1112/S1461157000001388. doi: 10.1112/S1461157000001388.

[19]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd edition, Springer, Berlin, 1999. doi: 10.1007/978-3-662-12616-5.

[20]

R. Kruse, Characterization of bistability for stochastic multistep methods, BIT, 52 (2012), 109-140, URL http://dx.doi.org/10.1007/s10543-011-0341-5. doi: 10.1007/s10543-011-0341-5.

[21]

R. Kruse, Consistency and stability of a Milstein-Galerkin finite element scheme for semilinear SPDE, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 471-516, URL http://dx.doi.org/10.1007/s40072-014-0037-3. doi: 10.1007/s40072-014-0037-3.

[22]

R. Kruse and Y. Wu, Error analysis of randomized Runge-Kutta methods for differential equations with time-irregular coefficients, Comput. Methods Appl. Math., 17 (2017), 479-498. doi: 10.1515/cmam-2016-0048.

[23]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing Limited, Chichester, 2008, URL http://dx.doi.org/10.1533/9780857099402. doi: 10.1533/9780857099402.

[24]

G. N. Milstein, Approximate integration of stochastic differential equations, Teor. Verojatnost. i Primenen., 19 (1974), 583-588, In Russian.

[25]

G. N. Milstein, Approximate integration of stochastic differential equations, Theory Probab. Appl., 19 (1975), 557-562, Translated by K. Durr.

[26]

G. N. Milstein, Numerical Integration of Stochastic Differential Equations, vol. 313 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995, Translated and revised from the 1988 Russian original. doi: 10.1007/978-94-015-8455-5.

[27]

G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Scientific Computation, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10063-9.

[28]

P. M. Morkisz and P. Przyby lowicz, Optimal pointwise approximation of SDE's from inexact information, J. Comput. Appl. Math., 324 (2017), 85-100, URL http://dx.doi.org/10.1016/j.cam.2017.04.023. doi: 10.1016/j.cam.2017.04.023.

[29]

P. Przyby lowicz, Minimal asymptotic error for one-point approximation of SDEs with timeirregular coefficients, J. Comput. Appl. Math., 282 (2015), 98-110, URL http://dx.doi.org/10.1016/j.cam.2015.01.003. doi: 10.1016/j.cam.2015.01.003.

[30]

P. Przyby lowicz, Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting, Appl. Math. Comput., 270 (2015), 441-457, URL http://dx.doi.org/10.1016/j.amc.2015.08.055. doi: 10.1016/j.amc.2015.08.055.

[31]

P. Przyby lowicz and P. Morkisz, Strong approximation of solutions of stochastic differential equations with time-irregular coefficients via randomized Euler algorithm, Appl. Numer. Math., 78 (2014), 80-94, URL http://dx.doi.org/10.1016/j.apnum.2013.12.003. doi: 10.1016/j.apnum.2013.12.003.

[32]

T. Rydén and M. Wiktorsson, On the simulation of iterated Itô integrals, Stochastic Process. Appl., 91 (2001), 151-168. doi: 10.1016/S0304-4149(00)00053-3.

[33]

M. N. Spijker, Stability and Convergence of Finite-Difference Methods, vol. 1968 of Doctoral dissertation, University of Leiden, Rijksuniversiteit te Leiden, Leiden, 1968.

[34]

M. N. Spijker, On the structure of error estimates for finite-difference methods, Numer. Math., 18 (1971/72), 73-100. doi: 10.1007/BF01398460.

[35]

G. Stengle, Numerical methods for systems with measurable coefficients, Appl. Math. Lett., 3 (1990), 25-29, URL http://dx.doi.org/10.1016/0893-9659(90)90040-I. doi: 10.1016/0893-9659(90)90040-I.

[36]

G. Stengle, Error analysis of a randomized numerical method, Numer. Math. , 70 (1995), 119-128, URL http://dx.doi.org/10.1007/s002110050113. doi: 10.1007/s002110050113.

[37]

F. Stummel, Approximation Methods in Analysis, Matematisk Institut, Aarhus Universitet, Aarhus, 1973, Lectures delivered during the spring term, 1973, Lecture Notes Series, No. 35.

[38]

J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, Information-based Complexity, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1988, With contributions by A. G. Werschulz and T. Boult.

[39]

M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions, Ann. Appl. Probab., 11 (2001), 470-487. doi: 10.1214/aoap/1015345301.

Figure 1.  Numerical experiment for SDE (48): Step sizes versus $L^2$ errors
Figure 2.  Numerical experiment for SDE (48): CPU time versus $L^2$ errors
Table Listing 1.  A sample implementation of (9) in Python
[1]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[2]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018203

[3]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[4]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[5]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[6]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[7]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[8]

Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinetic & Related Models, 2014, 7 (3) : 531-549. doi: 10.3934/krm.2014.7.531

[9]

Christopher Rackauckas, Qing Nie. Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2731-2761. doi: 10.3934/dcdsb.2017133

[10]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[11]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[12]

Weijun Zhou, Youhua Zhou. On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 893-899. doi: 10.3934/jimo.2013.9.893

[13]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[14]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[15]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[16]

Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025

[17]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[18]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[19]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[20]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (25)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]