• Previous Article
    Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat
  • DCDS-B Home
  • This Issue
  • Next Article
    Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space
doi: 10.3934/dcdsb.2018245

Evolutionarily stable dispersal strategies in a two-patch advective environment

1. 

School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China

2. 

Institute for Mathematical Science, Renmin University of China, Beijing 100872, China

* Corresponding author: Yihao Fang

Received  December 2017 Revised  March 2018 Published  August 2018

Fund Project: Jing-jing Xiang is partially supported by the Research Foundation of Education Bureau of Shaanxi Province (15JK1433), "The mathematical modeling and analysis of disease spreading in media". Yihao Fang is partially supported by the National Natural Science Foundation of China(11571364)

Two-patch models are used to mimic the unidirectional movement of organisms in continuous, advective environments. We assume that species can move between two patches, with patch 1 as the upper stream patch and patch 2 as the downstream patch. Species disperse between two patches with the same rate, and species in patch 1 is transported to patch 2 by drift, but not vice versa. We also mimic no-flux boundary conditions at the upstream and zero Dirichlet boundary conditions at the downstream. The criteria for the persistence of a single species is established. For two competing species model, we show that there is an intermediate dispersal rate which is evolutionarily stable. These results support the conjecture in [6], initially proposed for reaction-diffusion models with continuous advective environments.

Citation: Jing-Jing Xiang, Yihao Fang. Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018245
References:
[1]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, in Series in Mathematical and Computational Biology John Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.

[2]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discre. Contin. Dyn. Syst., 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701.

[3]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.

[4]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), 244-251. doi: 10.1016/0040-5809(83)90027-8.

[5]

K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 244-251. doi: 10.1080/17513758.2014.969336.

[6]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342. doi: 10.1007/s00285-013-0730-2.

[7]

Y. LouD. M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discre. Contin. Dyn. Syst. A, 36 (2016), 953-969. doi: 10.3934/dcds.2016.36.953.

[8]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171. doi: 10.1016/j.jde.2015.02.004.

[9]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160. doi: 10.1007/s11538-006-9100-1.

[10]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772. doi: 10.1137/050636152.

[11]

H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, in Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995.

[12]

J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.

[13]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.

[14]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469.

[15]

O. Vasilyeva and F. Lutscher, Competition in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958. doi: 10.1007/s11538-012-9792-3.

[16]

B. L. Xu and N. Liu, Optimal diffusion rate of species in flowing habitat, Advances in Difference Equations, 2017 (2017), Paper No. 266, 10 pp. doi: 10.1186/s13662-017-1326-8.

[17]

P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.

show all references

References:
[1]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, in Series in Mathematical and Computational Biology John Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.

[2]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discre. Contin. Dyn. Syst., 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701.

[3]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.

[4]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), 244-251. doi: 10.1016/0040-5809(83)90027-8.

[5]

K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 244-251. doi: 10.1080/17513758.2014.969336.

[6]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342. doi: 10.1007/s00285-013-0730-2.

[7]

Y. LouD. M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discre. Contin. Dyn. Syst. A, 36 (2016), 953-969. doi: 10.3934/dcds.2016.36.953.

[8]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171. doi: 10.1016/j.jde.2015.02.004.

[9]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160. doi: 10.1007/s11538-006-9100-1.

[10]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772. doi: 10.1137/050636152.

[11]

H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, in Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995.

[12]

J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.

[13]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.

[14]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469.

[15]

O. Vasilyeva and F. Lutscher, Competition in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958. doi: 10.1007/s11538-012-9792-3.

[16]

B. L. Xu and N. Liu, Optimal diffusion rate of species in flowing habitat, Advances in Difference Equations, 2017 (2017), Paper No. 266, 10 pp. doi: 10.1186/s13662-017-1326-8.

[17]

P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.

Figure 1.  Illustration of Lemma 3.6 for $0\leq q < 1$
Figure 2.  Illustration of Lemma 3.7 for $1\leq q < 5/4$
Figure 3.  PIP for $0<q < 1$ with the sign of $\lambda_1$
Figure 4.  PIP for $1\leq q < 5/4$ with the sign of $\lambda_1$
[1]

Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319

[2]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[3]

Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046

[4]

Theodore E. Galanthay. Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1625-1638. doi: 10.3934/dcdsb.2015.20.1625

[5]

Junfan Lu, Hong Gu, Bendong Lou. Expanding speed of the habitat for a species in an advective environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 483-490. doi: 10.3934/dcdsb.2017023

[6]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[7]

Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17

[8]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Evolution of mixed dispersal in periodic environments. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2047-2072. doi: 10.3934/dcdsb.2012.17.2047

[9]

S.A. Gourley, Yang Kuang. Two-Species Competition with High Dispersal: The Winning Strategy. Mathematical Biosciences & Engineering, 2005, 2 (2) : 345-362. doi: 10.3934/mbe.2005.2.345

[10]

Robert Stephen Cantrell, Brian Coomes, Yifan Sha. A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences & Engineering, 2017, 14 (4) : 953-973. doi: 10.3934/mbe.2017050

[11]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[12]

Roberto Garra. Confinement of a hot temperature patch in the modified SQG model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-10. doi: 10.3934/dcdsb.2018258

[13]

Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034

[14]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[15]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[16]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[17]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[18]

Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

[19]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[20]

Xiaoying Wang, Xingfu Zou. On a two-patch predator-prey model with adaptive habitancy of predators. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 677-697. doi: 10.3934/dcdsb.2016.21.677

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (14)
  • HTML views (130)
  • Cited by (0)

Other articles
by authors

[Back to Top]