• Previous Article
    Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay
  • DCDS-B Home
  • This Issue
  • Next Article
    On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections
August 2018, 23(6): 2121-2151. doi: 10.3934/dcdsb.2018228

Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response

1. 

School of Sciences, Nanchang University Nanchang 330031, China

2. 

Numerical Simulation and High-Performance Computing Laboratory, Nanchang University, Nanchang 330031, China

* Corresponding author: Xiaoqing Wen

Received  June 2016 Revised  March 2017 Published  July 2018

Fund Project: Hongwei Yin is supported by NSF of China (61563033 and 11461044) and NSF of Jiangxi Province (20161BAB201010). Xiaoqing Wen is supported by NSF of China (11563005)

In this paper, a Lévy-diffusion Leslie-Gower predator-prey model with a nonmonotonic functional response is studied. We show the existence, uniqueness and attractiveness of the globally positive solution to this model. Moreover, to its corresponding steady-state model, we obtain the stability of the semi-trivial solutions, the existence and nonexistence of coexistence states by the method of topological degree, the uniqueness and stability of coexistence state, and the multiplicity and stability of coexistence states by Grandall-Rabinowitz bifurcation theorem. In addition, to get these results, we study the property of the Lévy diffusion operator, and give out the comparison principle of the generalized parabolic Lévy-diffusion differential equation, as well as the existence and stability of the solution for the steady-state Logistic equation with Lévy diffusion. Furthermore, we obtain the comparison principle of the steady-state Lévy-diffusion equation. As far as we know, these results are new in the ecological model.

Citation: Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228
References:
[1]

P. AguirreE. González-Olivares and E. Sáez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Analysis: Real World Applications, 10 (2009), 1401-1416. doi: 10.1016/j.nonrwa.2008.01.022.

[2]

N. Ali and M. Jazar, Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses, Journal of Applied Mathematics and Computing, 43 (2013), 271-293. doi: 10.1007/s12190-013-0663-3.

[3]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526404.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[5]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, Journal of Mathematical Analysis and Applications, 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7.

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin Des Sciences Mathematiques, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[7]

S. FuL. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Analysis: Real World Applications, 14 (2013), 2027-2045. doi: 10.1016/j.nonrwa.2013.02.007.

[8]

D. HnaienF. Kellil and R. Lassoued, Asymptotic behavior of global solutions of an anomalous diffusion system, Journal of Mathematical Analysis and Applications, 421 (2014), 1519-1530. doi: 10.1016/j.jmaa.2014.07.083.

[9]

N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. R. Houghton and Others, Environmental context explains Lévy and brownian movement patterns of marine predators, Nature, 465 (2010), 1066–1069. doi: 10.1038/nature09116.

[10]

Y.-J. KimO. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, Journal of Mathematical Biology, 68 (2014), 1341-1370. doi: 10.1007/s00285-013-0674-6.

[11]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, Journal of Mathematical Analysis and Applications, 411 (2014), 107-118. doi: 10.1016/j.jmaa.2013.09.039.

[12]

Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Solitons & Fractals, 34 (2007), 606-620. doi: 10.1016/j.chaos.2006.03.068.

[13]

J. Liu, H. Zhou and L. Zhang, Cross-diffusion induced turing patterns in a sex-structured predator-prey model, International Journal of Biomathematics, 5 (2012), 1250016, 23PP. doi: 10.1142/S179352451100157X.

[14]

Y. F. LvR. Yuan and Y. Z. Pei, Turing pattern formation in a three species model with generalist predator and cross-diffusion, Nonlinear Analysis-Theory Methods & Applications, 85 (2013), 214-232. doi: 10.1016/j.na.2013.03.001.

[15]

R. PengM. Wang and G. Yang, Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, Applied Mathematics and Computation, 196 (2008), 570-577. doi: 10.1016/j.amc.2007.06.019.

[16]

R. Peng and M. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Applied Mathematics Letters, 20 (2007), 664-670. doi: 10.1016/j.aml.2006.08.020.

[17]

S. Secchi, Ground state solutions for nonlinear fractional schrödinger equations in $\mathbb R^n$, Journal of Mathematical Physics, 54 (2013), 031501, 17PP. doi: 10.1063/1.4793990.

[18]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, Journal of Mathematical Analysis and Applications, 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[19]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105-2137.

[20]

X. Shang and J. Zhang, Ground states for fractional schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207. doi: 10.1088/0951-7715/27/2/187.

[21]

D. W. SimsE. J. SouthallN. E. HumphriesG. C. HaysC. J. A. BradshawJ. W. PitchfordA. JamesM. Z. AhmedA. S. BrierleyM. A. HindellD. MorrittM. K. MusylD. RightonE. L. C. ShepardV. J. WearmouthR. P. WilsonM. J. Witt and J. D. Metcalfe, Scaling laws of marine predator search behaviour, Nature, 451 (2008), 1098-1102. doi: 10.1038/nature06518.

[22]

Y. Song and X. Zou, Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point, Computers & Mathematics with Applications, 67 (2014), 1978-1997. doi: 10.1016/j.camwa.2014.04.015.

[23]

V. Volterra, Variazioni E fluttuazioni del numero D'individui in specie conviventi, Mem Acad Lincei Roma, 2 (1926), 31-113.

[24]

M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D: Nonlinear Phenomena, 196 (2004), 172-192. doi: 10.1016/j.physd.2004.05.007.

[25]

D. Xiao and S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131. doi: 10.1142/S021812740100336X.

[26]

D. Xiao and H. Zhu, Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response, Siam Journal On Applied Mathematics, 66 (2006), 802-819. doi: 10.1137/050623449.

[27]

W. Yang, Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response, Nonlinear Analysis: Real World Applications, 14 (2013), 1323-1330. doi: 10.1016/j.nonrwa.2012.09.020.

[28]

Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, 2nd edition, Science Press, Beijing, 2011.

[29]

H. Yin, X. Xiao and X. Wen, Turing patterns in a predator-prey system with self-diffusion, Abstract and Applied Analysis, 2013 (2013), Art. ID 891738, 10 pp.

[30]

H. YinJ. ZhouX. Xiao and X. Wen, Analysis of a diffusive Leslie-Gower predator-prey model with nonmonotonic functional response, Chaos, Solitons & Fractals, 65 (2014), 51-61. doi: 10.1016/j.chaos.2014.04.010.

[31]

H. YinX. XiaoX. Wen and K. Liu, Pattern analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional response and diffusion, Computers & Mathematics with Applications, 67 (2014), 1607-1621. doi: 10.1016/j.camwa.2014.02.016.

[32]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393. doi: 10.1016/j.jmaa.2012.01.013.

[33]

J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent diffusion, Nonlinear Analysis: Theory, Methods & Applications, 82 (2013), 47-65. doi: 10.1016/j.na.2012.12.014.

[34]

H. ZhuG. S. K. Wolkowicz and S. A. Campbell, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal On Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[35]

B. ZimmermannH. SandP. WabakkenO. Liberg and H. P. Andreassen, Predator-dependent functional response in wolves: From food limitation to surplus killing, Journal of Animal Ecology, 84 (2015), 102-112. doi: 10.1111/1365-2656.12280.

show all references

References:
[1]

P. AguirreE. González-Olivares and E. Sáez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Analysis: Real World Applications, 10 (2009), 1401-1416. doi: 10.1016/j.nonrwa.2008.01.022.

[2]

N. Ali and M. Jazar, Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses, Journal of Applied Mathematics and Computing, 43 (2013), 271-293. doi: 10.1007/s12190-013-0663-3.

[3]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526404.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[5]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, Journal of Mathematical Analysis and Applications, 91 (1983), 131-151. doi: 10.1016/0022-247X(83)90098-7.

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin Des Sciences Mathematiques, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[7]

S. FuL. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Analysis: Real World Applications, 14 (2013), 2027-2045. doi: 10.1016/j.nonrwa.2013.02.007.

[8]

D. HnaienF. Kellil and R. Lassoued, Asymptotic behavior of global solutions of an anomalous diffusion system, Journal of Mathematical Analysis and Applications, 421 (2014), 1519-1530. doi: 10.1016/j.jmaa.2014.07.083.

[9]

N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. R. Houghton and Others, Environmental context explains Lévy and brownian movement patterns of marine predators, Nature, 465 (2010), 1066–1069. doi: 10.1038/nature09116.

[10]

Y.-J. KimO. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, Journal of Mathematical Biology, 68 (2014), 1341-1370. doi: 10.1007/s00285-013-0674-6.

[11]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, Journal of Mathematical Analysis and Applications, 411 (2014), 107-118. doi: 10.1016/j.jmaa.2013.09.039.

[12]

Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Solitons & Fractals, 34 (2007), 606-620. doi: 10.1016/j.chaos.2006.03.068.

[13]

J. Liu, H. Zhou and L. Zhang, Cross-diffusion induced turing patterns in a sex-structured predator-prey model, International Journal of Biomathematics, 5 (2012), 1250016, 23PP. doi: 10.1142/S179352451100157X.

[14]

Y. F. LvR. Yuan and Y. Z. Pei, Turing pattern formation in a three species model with generalist predator and cross-diffusion, Nonlinear Analysis-Theory Methods & Applications, 85 (2013), 214-232. doi: 10.1016/j.na.2013.03.001.

[15]

R. PengM. Wang and G. Yang, Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, Applied Mathematics and Computation, 196 (2008), 570-577. doi: 10.1016/j.amc.2007.06.019.

[16]

R. Peng and M. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Applied Mathematics Letters, 20 (2007), 664-670. doi: 10.1016/j.aml.2006.08.020.

[17]

S. Secchi, Ground state solutions for nonlinear fractional schrödinger equations in $\mathbb R^n$, Journal of Mathematical Physics, 54 (2013), 031501, 17PP. doi: 10.1063/1.4793990.

[18]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, Journal of Mathematical Analysis and Applications, 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[19]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105-2137.

[20]

X. Shang and J. Zhang, Ground states for fractional schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207. doi: 10.1088/0951-7715/27/2/187.

[21]

D. W. SimsE. J. SouthallN. E. HumphriesG. C. HaysC. J. A. BradshawJ. W. PitchfordA. JamesM. Z. AhmedA. S. BrierleyM. A. HindellD. MorrittM. K. MusylD. RightonE. L. C. ShepardV. J. WearmouthR. P. WilsonM. J. Witt and J. D. Metcalfe, Scaling laws of marine predator search behaviour, Nature, 451 (2008), 1098-1102. doi: 10.1038/nature06518.

[22]

Y. Song and X. Zou, Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point, Computers & Mathematics with Applications, 67 (2014), 1978-1997. doi: 10.1016/j.camwa.2014.04.015.

[23]

V. Volterra, Variazioni E fluttuazioni del numero D'individui in specie conviventi, Mem Acad Lincei Roma, 2 (1926), 31-113.

[24]

M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D: Nonlinear Phenomena, 196 (2004), 172-192. doi: 10.1016/j.physd.2004.05.007.

[25]

D. Xiao and S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131. doi: 10.1142/S021812740100336X.

[26]

D. Xiao and H. Zhu, Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response, Siam Journal On Applied Mathematics, 66 (2006), 802-819. doi: 10.1137/050623449.

[27]

W. Yang, Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response, Nonlinear Analysis: Real World Applications, 14 (2013), 1323-1330. doi: 10.1016/j.nonrwa.2012.09.020.

[28]

Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, 2nd edition, Science Press, Beijing, 2011.

[29]

H. Yin, X. Xiao and X. Wen, Turing patterns in a predator-prey system with self-diffusion, Abstract and Applied Analysis, 2013 (2013), Art. ID 891738, 10 pp.

[30]

H. YinJ. ZhouX. Xiao and X. Wen, Analysis of a diffusive Leslie-Gower predator-prey model with nonmonotonic functional response, Chaos, Solitons & Fractals, 65 (2014), 51-61. doi: 10.1016/j.chaos.2014.04.010.

[31]

H. YinX. XiaoX. Wen and K. Liu, Pattern analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional response and diffusion, Computers & Mathematics with Applications, 67 (2014), 1607-1621. doi: 10.1016/j.camwa.2014.02.016.

[32]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393. doi: 10.1016/j.jmaa.2012.01.013.

[33]

J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent diffusion, Nonlinear Analysis: Theory, Methods & Applications, 82 (2013), 47-65. doi: 10.1016/j.na.2012.12.014.

[34]

H. ZhuG. S. K. Wolkowicz and S. A. Campbell, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal On Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[35]

B. ZimmermannH. SandP. WabakkenO. Liberg and H. P. Andreassen, Predator-dependent functional response in wolves: From food limitation to surplus killing, Journal of Animal Ecology, 84 (2015), 102-112. doi: 10.1111/1365-2656.12280.

Figure 1.  Response functions
[1]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[2]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[3]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[4]

Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127

[5]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[6]

Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065

[7]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[8]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[9]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042

[10]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[11]

Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585

[12]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[13]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[14]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[15]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[16]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[17]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[18]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[19]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[20]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (42)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]