August 2018, 23(6): 2091-2119. doi: 10.3934/dcdsb.2018227

Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay

1. 

School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205, China

2. 

College of Science, National University of Defense Technology, Changsha, 410073, China

3. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China

* Corresponding author: Jianhua Huang

Received  June 2016 Revised  May 2018 Published  July 2018

This paper is concerned with a class of advection hyperbolic-parabolic systems with nonlocal delay. We prove that the wave profile is described by a hybrid system that consists of an integral transformation and an ordinary differential equation. By considering the same problem for a properly parameterized system and the continuous dependence of the wave speed on the parameter involved, we obtain the existence and uniqueness of traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay under bistable assumption. The influence of advection on the propagation speed is also considered.

Citation: Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227
References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805. doi: 10.1090/S0002-9947-99-02134-0.

[2]

J. F. M. Al-Omari and S. A. Gourly, Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312. doi: 10.1007/s002850200159.

[3]

J. F. M. Al-Omari and S. A. Gourley, Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. Math., 70 (2005), 858-879. doi: 10.1093/imamat/hxh073.

[4]

P. B. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourly, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122. doi: 10.1007/s00033-002-8145-8.

[5]

H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, in: H. Berestycki, Y. Pomeau (Eds. ), Nonlinear PDEs in Condensed Matter and Reactive Flows, in: NATO Sci. Ser. C, Kluwer, Dordrecht, 569 (2003), 11-48. doi: 10.1007/978-94-010-0307-0_2.

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572. doi: 10.1016/S0294-1449(16)30229-3.

[7]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346. doi: 10.1088/0951-7715/17/1/018.

[8]

N. F. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986. doi: 10.1002/bimj.4710310608.

[9]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688. doi: 10.1137/0150099.

[10]

M. CenciniC. Lopez and D. Vergni, Reaction-Diffusion systems: Front propagation and spatial structures, Lecture Notes in Phys., 636 (2003), 187-210. doi: 10.1007/978-3-540-39668-0_9.

[11]

F. Chen, Travelling waves for a neural network, Electron. J. Differential Equations, 2003 (2003), 1-4.

[12]

X. Chen, Generation and propagation of interfaces in reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141. doi: 10.1016/0022-0396(92)90146-E.

[13]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.

[14]

X. Chen and J. S. Guo, Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (1992), 549-569. doi: 10.1006/jdeq.2001.4153.

[15]

X. Chen and J. S. Guo, Uniqueness and existence of travelling waves of discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146. doi: 10.1007/s00208-003-0414-0.

[16]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser., vol. 279, Longman Scientific Technical, Harlow, 1992.

[17]

B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Ser. A, 123 (1993), 461-478. doi: 10.1017/S030821050002583X.

[18]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure. Appl. Math., 45 (1992), 1097-1123. doi: 10.1002/cpa.3160450903.

[19]

P. C. Fife and J. B. McLeod, Phase transitions and generalized motion by mean curvature, Arch. Ration. Mech. Anal., 65 (1977), 355-361.

[20]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection-Reaction, Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkh$ü$ser, Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.

[21]

S. A. Gourley, Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 32 (2000), 843-853. doi: 10.1016/S0895-7177(00)00175-8.

[22]

S. A. Gourley, Wave front solutions of a diffusive delay model for populations of Daphnia magna, Comput. Math. Appl., 42 (2001), 1421-1430. doi: 10.1016/S0898-1221(01)00251-6.

[23]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579. doi: 10.1098/rspa.2002.1094.

[24]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991.

[25]

X. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310. doi: 10.1007/s00332-003-0524-6.

[26]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436. doi: 10.1007/s10884-006-9065-7.

[27]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. doi: 10.1016/j.jde.2005.05.004.

[28]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190. doi: 10.1016/j.jde.2004.07.014.

[29]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[30]

L. Malaguti and C. Marcelli, The influence of convective effects on front propagation in certain diffusive models, in: V. Capasso (Ed. ), Mathematical Modelling and Computing in Biology and Medicine, 5th ESMTB Conference, 2002, Esculapio, Bologna, 1 (2003), 362-367.

[31]

L. MalagutiC. Marcelli and S. Matucci, Front propagation in bistable reaction-diffusion-advection equations, Adv. Differential Equations, 9 (2004), 1143-1166.

[32]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[33]

C. Ou and J. Wu, Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model, Nonlinear Anal., 63 (2005), 364-387. doi: 10.1016/j.na.2005.05.025.

[34]

G. Raugel and J. Wu, Hyperbolic-parabolic equations with delayed non-local interaction: model derivation, wavefronts and global attractors, Preprint.

[35]

S. Ruan and D. Xiao, Stability of steady states and existence of traveling waves in a vector disease model, Proc. Roy. Soc. Edinburgh Ser. A, 134 (2004), 991-1011. doi: 10.1017/S0308210500003590.

[36]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.1090/S0002-9947-1987-0891637-2.

[37]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness, J. Differential Equations, 159 (1999), 1-54. doi: 10.1006/jdeq.1999.3651.

[38]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. Ⅱ. Existence, J. Differential Equations, 159 (1999), 55-101. doi: 10.1006/jdeq.1999.3652.

[39]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534. doi: 10.1137/S0036141098346785.

[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations, J. Differential Equations, 93 (1991), 332-363. doi: 10.1016/0022-0396(91)90016-3.

[41]

J. W. H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.

[42]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994.

[43]

Z. C. WangW. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232. doi: 10.1016/j.jde.2005.08.010.

[44]

Z. C. WangW. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[45]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119, Springer, NewYork, 1986. doi: 10.1007/978-1-4612-4050-1.

[46]

J. Wu and X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687. doi: 10.1023/A:1016690424892.

[47]

X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321. doi: 10.1016/S0377-0427(02)00363-1.

show all references

References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805. doi: 10.1090/S0002-9947-99-02134-0.

[2]

J. F. M. Al-Omari and S. A. Gourly, Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312. doi: 10.1007/s002850200159.

[3]

J. F. M. Al-Omari and S. A. Gourley, Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. Math., 70 (2005), 858-879. doi: 10.1093/imamat/hxh073.

[4]

P. B. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourly, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122. doi: 10.1007/s00033-002-8145-8.

[5]

H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, in: H. Berestycki, Y. Pomeau (Eds. ), Nonlinear PDEs in Condensed Matter and Reactive Flows, in: NATO Sci. Ser. C, Kluwer, Dordrecht, 569 (2003), 11-48. doi: 10.1007/978-94-010-0307-0_2.

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572. doi: 10.1016/S0294-1449(16)30229-3.

[7]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346. doi: 10.1088/0951-7715/17/1/018.

[8]

N. F. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986. doi: 10.1002/bimj.4710310608.

[9]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688. doi: 10.1137/0150099.

[10]

M. CenciniC. Lopez and D. Vergni, Reaction-Diffusion systems: Front propagation and spatial structures, Lecture Notes in Phys., 636 (2003), 187-210. doi: 10.1007/978-3-540-39668-0_9.

[11]

F. Chen, Travelling waves for a neural network, Electron. J. Differential Equations, 2003 (2003), 1-4.

[12]

X. Chen, Generation and propagation of interfaces in reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141. doi: 10.1016/0022-0396(92)90146-E.

[13]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.

[14]

X. Chen and J. S. Guo, Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (1992), 549-569. doi: 10.1006/jdeq.2001.4153.

[15]

X. Chen and J. S. Guo, Uniqueness and existence of travelling waves of discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146. doi: 10.1007/s00208-003-0414-0.

[16]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser., vol. 279, Longman Scientific Technical, Harlow, 1992.

[17]

B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Ser. A, 123 (1993), 461-478. doi: 10.1017/S030821050002583X.

[18]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure. Appl. Math., 45 (1992), 1097-1123. doi: 10.1002/cpa.3160450903.

[19]

P. C. Fife and J. B. McLeod, Phase transitions and generalized motion by mean curvature, Arch. Ration. Mech. Anal., 65 (1977), 355-361.

[20]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection-Reaction, Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkh$ü$ser, Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.

[21]

S. A. Gourley, Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 32 (2000), 843-853. doi: 10.1016/S0895-7177(00)00175-8.

[22]

S. A. Gourley, Wave front solutions of a diffusive delay model for populations of Daphnia magna, Comput. Math. Appl., 42 (2001), 1421-1430. doi: 10.1016/S0898-1221(01)00251-6.

[23]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579. doi: 10.1098/rspa.2002.1094.

[24]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991.

[25]

X. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310. doi: 10.1007/s00332-003-0524-6.

[26]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436. doi: 10.1007/s10884-006-9065-7.

[27]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87. doi: 10.1016/j.jde.2005.05.004.

[28]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190. doi: 10.1016/j.jde.2004.07.014.

[29]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[30]

L. Malaguti and C. Marcelli, The influence of convective effects on front propagation in certain diffusive models, in: V. Capasso (Ed. ), Mathematical Modelling and Computing in Biology and Medicine, 5th ESMTB Conference, 2002, Esculapio, Bologna, 1 (2003), 362-367.

[31]

L. MalagutiC. Marcelli and S. Matucci, Front propagation in bistable reaction-diffusion-advection equations, Adv. Differential Equations, 9 (2004), 1143-1166.

[32]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[33]

C. Ou and J. Wu, Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model, Nonlinear Anal., 63 (2005), 364-387. doi: 10.1016/j.na.2005.05.025.

[34]

G. Raugel and J. Wu, Hyperbolic-parabolic equations with delayed non-local interaction: model derivation, wavefronts and global attractors, Preprint.

[35]

S. Ruan and D. Xiao, Stability of steady states and existence of traveling waves in a vector disease model, Proc. Roy. Soc. Edinburgh Ser. A, 134 (2004), 991-1011. doi: 10.1017/S0308210500003590.

[36]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.1090/S0002-9947-1987-0891637-2.

[37]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness, J. Differential Equations, 159 (1999), 1-54. doi: 10.1006/jdeq.1999.3651.

[38]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. Ⅱ. Existence, J. Differential Equations, 159 (1999), 55-101. doi: 10.1006/jdeq.1999.3652.

[39]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534. doi: 10.1137/S0036141098346785.

[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations, J. Differential Equations, 93 (1991), 332-363. doi: 10.1016/0022-0396(91)90016-3.

[41]

J. W. H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 457 (2001), 1841-1853. doi: 10.1098/rspa.2001.0789.

[42]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994.

[43]

Z. C. WangW. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232. doi: 10.1016/j.jde.2005.08.010.

[44]

Z. C. WangW. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[45]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119, Springer, NewYork, 1986. doi: 10.1007/978-1-4612-4050-1.

[46]

J. Wu and X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687. doi: 10.1023/A:1016690424892.

[47]

X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321. doi: 10.1016/S0377-0427(02)00363-1.

[1]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[2]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[3]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[4]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[5]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[6]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[7]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[8]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[9]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[10]

Wenjie Zuo, Junping Shi. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1179-1200. doi: 10.3934/cpaa.2018057

[11]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[12]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[13]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[14]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[15]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[16]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

[19]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[20]

Zhi-Cheng Wang. Traveling curved fronts in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2339-2374. doi: 10.3934/dcds.2012.32.2339

2017 Impact Factor: 0.972

Article outline

[Back to Top]