doi: 10.3934/dcdsb.2018222

Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems

1. 

School of Mathematics, Sichuan University, Chengdu 610064, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

3. 

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China

* Corresponding author: Jinlong Wei

Received  January 2018 Revised  March 2018 Published  June 2018

Fund Project: The first author is partially supported by National Science Foundation of China (116712787) and Graduate Student's Research and Innovation Fund of Sichuan University (2018YJSY045). The third author is partially supported by National Science Foundation of China (11501577, 61773401)

In the past years, there were very few works on the existence of nonconstant periodic solutions with fixed energy of singular second-order Hamiltonian systems, and now we attempt to ingeniously use Ekeland's variational principle to prove the existence of nonconstant periodic solutions with any fixed energy for singular second-order Hamiltonian systems, and our results greatly generalize some well known results such as [1,Theorem 3.6]. Moreover, we exhibit two simple and instructive singular potential examples to make our result more clear, which have not been solved by known results.

Citation: Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018222
References:
[1]

A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Ration. Mech. Anal., 112 (1990), 339-362. doi: 10.1007/BF02384078.

[2]

A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for a class of N-body problems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 187-200. doi: 10.1016/S0294-1449(16)30244-X.

[3]

A. Ambrosetti and V. C. Zelati, Periodic Solutions of Singular Lagrangian Systems, Birkäuser, Boston, 1993. doi: 10.1007/978-1-4612-0319-3.

[4]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 1997.

[5]

V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Institute H. Poincaré-Anal. Non Linéaive, 1 (1984), 379-400. doi: 10.1016/S0294-1449(16)30419-X.

[6]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. doi: 10.1007/BF01389883.

[7]

M. Boughariou, Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces, Discrete Contin. Dynam. Systems, 9 (2003), 603-616. doi: 10.3934/dcds.2003.9.603.

[8]

C. CarminatiE. Sere and K. Tanaka, The fixed energy problem for a class of nonconvex singular Hamiltonian systems, J. Differential Equations, 230 (2006), 362-377. doi: 10.1016/j.jde.2006.01.021.

[9]

R. Castelli, Topologically distinct collision-free periodic solutions for the $N$ -center problem, Arch. Ration. Mech. Anal., 223 (2017), 941-975. doi: 10.1007/s00205-016-1049-0.

[10]

C. F. Che and X. P. Xue, Periodic solutions for second order Hamiltonian systems on an arbitrary energy surface, Ann. Pol. Math., 105 (2012), 1-12. doi: 10.4064/ap105-1-1.

[11]

W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1.

[12]

Y. M. Long and S. Q. Zhang, Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy, J. Differential Equations, 160 (2000), 422-438. doi: 10.1006/jdeq.1999.3659.

[13]

P. Majer and S. Terracini, Periodic solutions to some N-body type problems: the fixed energy case, Duke Math. J., 69 (1993), 683-697. doi: 10.1215/S0012-7094-93-06929-3.

[14]

P. Majer and S. Terracini, Periodic solutions to some problems of n-body type, Arch. Ration. Mech. Anal., 124 (1993), 381-404. doi: 10.1007/BF00375608.

[15]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York-Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[16]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-9323-5.

[17]

R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30. doi: 10.1007/BF01941322.

[18]

L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving strong forces, Nonlinear Anal. Theor., 21 (1993), 167-179. doi: 10.1016/0362-546X(93)90107-4.

[19]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pur. Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[20]

E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, Princeton, 2005.

[21]

S. Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 597-641. doi: 10.1016/S0294-1449(16)30224-4.

[22]

E. Vitillaro, Periodic solutions for singular conservative systems, J. Math. Anal. Appl., 185 (1994), 403-429. doi: 10.1006/jmaa.1994.1258.

[23]

D. L. WuC. Li and P. F. Yuan, Periodic solutions for a class of second-order Hamiltonian systems of precribed energy, Electron. J. Qual. Theo., 77 (2015), 1-10.

[24]

S. Q. Zhang, Multiple closed orbits of fixed energy for N-body-type problems with gravitational potentials, J. Math. Anal. Appl., 208 (1997), 462-475. doi: 10.1006/jmaa.1997.5338.

[25]

S. Q. Zhang, Periodic solutions for some second order Hamiltonian systems, Nonlinearity, 22 (2009), 2141-2150. doi: 10.1088/0951-7715/22/9/005.

show all references

References:
[1]

A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Ration. Mech. Anal., 112 (1990), 339-362. doi: 10.1007/BF02384078.

[2]

A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for a class of N-body problems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 187-200. doi: 10.1016/S0294-1449(16)30244-X.

[3]

A. Ambrosetti and V. C. Zelati, Periodic Solutions of Singular Lagrangian Systems, Birkäuser, Boston, 1993. doi: 10.1007/978-1-4612-0319-3.

[4]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 1997.

[5]

V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Institute H. Poincaré-Anal. Non Linéaive, 1 (1984), 379-400. doi: 10.1016/S0294-1449(16)30419-X.

[6]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. doi: 10.1007/BF01389883.

[7]

M. Boughariou, Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces, Discrete Contin. Dynam. Systems, 9 (2003), 603-616. doi: 10.3934/dcds.2003.9.603.

[8]

C. CarminatiE. Sere and K. Tanaka, The fixed energy problem for a class of nonconvex singular Hamiltonian systems, J. Differential Equations, 230 (2006), 362-377. doi: 10.1016/j.jde.2006.01.021.

[9]

R. Castelli, Topologically distinct collision-free periodic solutions for the $N$ -center problem, Arch. Ration. Mech. Anal., 223 (2017), 941-975. doi: 10.1007/s00205-016-1049-0.

[10]

C. F. Che and X. P. Xue, Periodic solutions for second order Hamiltonian systems on an arbitrary energy surface, Ann. Pol. Math., 105 (2012), 1-12. doi: 10.4064/ap105-1-1.

[11]

W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1.

[12]

Y. M. Long and S. Q. Zhang, Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy, J. Differential Equations, 160 (2000), 422-438. doi: 10.1006/jdeq.1999.3659.

[13]

P. Majer and S. Terracini, Periodic solutions to some N-body type problems: the fixed energy case, Duke Math. J., 69 (1993), 683-697. doi: 10.1215/S0012-7094-93-06929-3.

[14]

P. Majer and S. Terracini, Periodic solutions to some problems of n-body type, Arch. Ration. Mech. Anal., 124 (1993), 381-404. doi: 10.1007/BF00375608.

[15]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York-Berlin, 1989. doi: 10.1007/978-1-4757-2061-7.

[16]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-9323-5.

[17]

R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30. doi: 10.1007/BF01941322.

[18]

L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving strong forces, Nonlinear Anal. Theor., 21 (1993), 167-179. doi: 10.1016/0362-546X(93)90107-4.

[19]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pur. Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[20]

E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, Princeton, 2005.

[21]

S. Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 597-641. doi: 10.1016/S0294-1449(16)30224-4.

[22]

E. Vitillaro, Periodic solutions for singular conservative systems, J. Math. Anal. Appl., 185 (1994), 403-429. doi: 10.1006/jmaa.1994.1258.

[23]

D. L. WuC. Li and P. F. Yuan, Periodic solutions for a class of second-order Hamiltonian systems of precribed energy, Electron. J. Qual. Theo., 77 (2015), 1-10.

[24]

S. Q. Zhang, Multiple closed orbits of fixed energy for N-body-type problems with gravitational potentials, J. Math. Anal. Appl., 208 (1997), 462-475. doi: 10.1006/jmaa.1997.5338.

[25]

S. Q. Zhang, Periodic solutions for some second order Hamiltonian systems, Nonlinearity, 22 (2009), 2141-2150. doi: 10.1088/0951-7715/22/9/005.

[1]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[2]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[3]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[4]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[5]

Josep M. Olm, Xavier Ros-Oton. Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1603-1614. doi: 10.3934/dcds.2013.33.1603

[6]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[7]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[8]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[9]

Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251

[10]

Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983

[11]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-605. doi: 10.3934/dcds.2019024

[12]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[13]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[14]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[15]

Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005

[16]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[17]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[18]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[19]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[20]

Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (27)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]