• Previous Article
    Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient
  • DCDS-B Home
  • This Issue
  • Next Article
    A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients
doi: 10.3934/dcdsb.2018220

Global existence and stability in a two-species chemotaxis system

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China

* Corresponding author: S. Guo

Received  December 2017 Revised  March 2018 Published  June 2018

Fund Project: The second author is supported by NSF of China (Grants No. 11671123)

This paper deals with the following two-species chemotaxis system
$\left\{ \begin{array}{*{35}{l}} \ \ {{u}_{t}}=\Delta u-{{\chi }_{1}}\nabla \cdot (u\nabla v)+{{\mu }_{1}}u(1-u-{{a}_{1}}w), & x\in \Omega ,t>0, & \\ \ \ {{v}_{t}}=\Delta v-v+h(w), & x\in \Omega ,t>0, & \\ \ \ {{w}_{t}}=\Delta w-{{\chi }_{2}}\nabla \cdot (w\nabla z)+{{\mu }_{2}}w(1-w-{{a}_{2}}u), & x\in \Omega ,t>0, & \\ \ \ {{z}_{t}}=\Delta z-z+h(u),& x\in \Omega ,t>0, & \\\end{array} \right.$
under homogeneous Neumann boundary conditions in a bounded domain
$Ω\subset\mathbb{R}^{n}$
with smooth boundary. The parameters in the system are positive and the signal production function h is a prescribed C1-regular function. The main objectives of this paper are two-fold: One is the existence and boundedness of global solutions, the other is the large time behavior of the global bounded solutions in three competition cases (i.e., a weak competition case, a partially strong competition case and a fully strong competition case). It is shown that the unique positive spatially homogeneous equilibrium
$(u_{*}, v_{*}, w_{*}, z_{*})$
may be globally attractive in the weak competition case (i.e.,
$0 < a_{1}, a_{2} < 1$
), while the constant stationary solution (0, h(1), 1, 0) may be globally attractive and globally stable in the partially strong competition case (i.e.,
$a_{1}>1>a_{2}>0$
). In the fully strong competition case (i.e.
$a_{1}, a_{2}>1$
), however, we can only obtain the local stability of the two semi-trivial stationary solutions (0, h(1), 1, 0) and (1, 0, 0, h(1)) and the instability of the positive spatially homogeneous
$(u_{*}, v_{*}, w_{*}, z_{*})$
. The matter which species ultimately wins out depends crucially on the starting advantage each species has.
Citation: Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018220
References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J, 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776.

[2]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 1253-1272. doi: 10.3934/dcdsb.2017061.

[3]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Applied Mathematics Letters, 57 (2016), 1-6. doi: 10.1016/j.aml.2015.12.001.

[4]

X. ChenJ. HaoX. WangY. Wu and Y. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, Journal of Differential Equations, 257 (2014), 3102-3134. doi: 10.1016/j.jde.2014.06.008.

[5]

A.-K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 13 (1989), 1091-1113. doi: 10.1016/0362-546X(89)90097-7.

[6]

S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Analysis: Real World Applications, 42 (2018), 448-477. doi: 10.1016/j.nonrwa.2018.01.011.

[7]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817. doi: 10.1016/j.jde.2015.09.031.

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber Deutsch. Math.-Verein., 106 (2004), 51-69.

[10]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72. doi: 10.1016/j.na.2016.01.017.

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016.

[14]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems - Series B, 20 (2017), 1499-1527. doi: 10.3934/dcdsb.2015.20.1499.

[15]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.

[16]

D. Li and S. Guo, Stability and Hopf bifurcation in a reaction-diffusion model with chemotaxis and nonlocal delay effect, International Journal of Bifurcation and Chaos, 28 (2018), 1850046. doi: 10.1142/S0218127418500463.

[17]

P. L. Lions, Résolution de problemes elliptiques quasilinéaires, Archive for Rational Mechanics and Analysis, 74 (1980), 335-353. doi: 10.1007/BF00249679.

[18]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attractionrepulsion chemotaxis model, Mathematical Methods in the Applied Sciences, 38 (2015), 2537-2546. doi: 10.1002/mma.3240.

[19]

A. Lunardi, Asymptotic exponential stability in quasilinear parabolic equations, Nonlinear Analysis: Theory, Methods & Applications, 9 (1985), 563-586. doi: 10.1016/0362-546X(85)90041-0.

[20]

J. D. Murray, Mathematical Biology. Ⅱ Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag, New York, 2003.

[21]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete and Continuous Dynamical Systems - Series B, 18 (2014), 2627-2646. doi: 10.3934/dcdsb.2013.18.2627.

[22]

E. Nakaguchi and K. Osaki, Lp-estimates of solutions to n-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation, Funkcialaj Ekvacioj, 59 (2016), 51-66. doi: 10.1619/fesi.59.51.

[23]

E. Nakaguchi and K. Osaki, et al., Global existence of solutions to an n-dimensional parabolicparabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, 55 (2018), 51-70.

[24]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis: Theory, Methods & Applications, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[25]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.

[26]

C. G. Simader, The weak Dirichlet and Neumann problem for the Laplacian in Lq for bounded and exterior domains. applications, In Nonlinear Analysis, Function Spaces and Applications Vol. 4, Springer, 119 (1990), 180-223.

[27]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, Journal of Mathematical Biology, 68 (2014), 1607-1626. doi: 10.1007/s00285-013-0681-7.

[28]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 3165-3183. doi: 10.3934/dcdsb.2015.20.3165.

[29]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1.

[30]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.

[31]

L. WangC. MuX. Hu and P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, Journal of Differential Equations, 264 (2018), 3369-3401. doi: 10.1016/j.jde.2017.11.019.

[32]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[33]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis & Applications, 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057.

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, Journal of Nonlinear Science, 24 (2014), 809-855. doi: 10.1007/s00332-014-9205-x.

[36]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Zeitschrift für angewandte Mathematik und Physik, 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[37]

S. Yan and S. Guo, Bifurcation phenomena in a Lotka-Volterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos 27 (2017), 1750105, 24pp. doi: 10.1142/S021812741750105X.

[38]

P. ZhengC. MuR. Willie and X. Hu, Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity, Computers & Mathematics with Applications, 75 (2018), 1667-1675. doi: 10.1016/j.camwa.2017.11.032.

[39]

R. Zou and S. Guo, Bifurcation of reaction cross-diffusion systems, International Journal of Bifurcation and Chaos, 27 (2017), 1750049, 22pp. doi: 10.1142/S0218127417500493.

show all references

References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J, 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776.

[2]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 1253-1272. doi: 10.3934/dcdsb.2017061.

[3]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Applied Mathematics Letters, 57 (2016), 1-6. doi: 10.1016/j.aml.2015.12.001.

[4]

X. ChenJ. HaoX. WangY. Wu and Y. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, Journal of Differential Equations, 257 (2014), 3102-3134. doi: 10.1016/j.jde.2014.06.008.

[5]

A.-K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 13 (1989), 1091-1113. doi: 10.1016/0362-546X(89)90097-7.

[6]

S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Analysis: Real World Applications, 42 (2018), 448-477. doi: 10.1016/j.nonrwa.2018.01.011.

[7]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817. doi: 10.1016/j.jde.2015.09.031.

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber Deutsch. Math.-Verein., 106 (2004), 51-69.

[10]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72. doi: 10.1016/j.na.2016.01.017.

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016.

[14]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems - Series B, 20 (2017), 1499-1527. doi: 10.3934/dcdsb.2015.20.1499.

[15]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.

[16]

D. Li and S. Guo, Stability and Hopf bifurcation in a reaction-diffusion model with chemotaxis and nonlocal delay effect, International Journal of Bifurcation and Chaos, 28 (2018), 1850046. doi: 10.1142/S0218127418500463.

[17]

P. L. Lions, Résolution de problemes elliptiques quasilinéaires, Archive for Rational Mechanics and Analysis, 74 (1980), 335-353. doi: 10.1007/BF00249679.

[18]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attractionrepulsion chemotaxis model, Mathematical Methods in the Applied Sciences, 38 (2015), 2537-2546. doi: 10.1002/mma.3240.

[19]

A. Lunardi, Asymptotic exponential stability in quasilinear parabolic equations, Nonlinear Analysis: Theory, Methods & Applications, 9 (1985), 563-586. doi: 10.1016/0362-546X(85)90041-0.

[20]

J. D. Murray, Mathematical Biology. Ⅱ Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag, New York, 2003.

[21]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete and Continuous Dynamical Systems - Series B, 18 (2014), 2627-2646. doi: 10.3934/dcdsb.2013.18.2627.

[22]

E. Nakaguchi and K. Osaki, Lp-estimates of solutions to n-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation, Funkcialaj Ekvacioj, 59 (2016), 51-66. doi: 10.1619/fesi.59.51.

[23]

E. Nakaguchi and K. Osaki, et al., Global existence of solutions to an n-dimensional parabolicparabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, 55 (2018), 51-70.

[24]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis: Theory, Methods & Applications, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[25]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.

[26]

C. G. Simader, The weak Dirichlet and Neumann problem for the Laplacian in Lq for bounded and exterior domains. applications, In Nonlinear Analysis, Function Spaces and Applications Vol. 4, Springer, 119 (1990), 180-223.

[27]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, Journal of Mathematical Biology, 68 (2014), 1607-1626. doi: 10.1007/s00285-013-0681-7.

[28]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 3165-3183. doi: 10.3934/dcdsb.2015.20.3165.

[29]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1.

[30]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.

[31]

L. WangC. MuX. Hu and P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, Journal of Differential Equations, 264 (2018), 3369-3401. doi: 10.1016/j.jde.2017.11.019.

[32]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[33]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis & Applications, 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057.

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, Journal of Nonlinear Science, 24 (2014), 809-855. doi: 10.1007/s00332-014-9205-x.

[36]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Zeitschrift für angewandte Mathematik und Physik, 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.

[37]

S. Yan and S. Guo, Bifurcation phenomena in a Lotka-Volterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos 27 (2017), 1750105, 24pp. doi: 10.1142/S021812741750105X.

[38]

P. ZhengC. MuR. Willie and X. Hu, Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity, Computers & Mathematics with Applications, 75 (2018), 1667-1675. doi: 10.1016/j.camwa.2017.11.032.

[39]

R. Zou and S. Guo, Bifurcation of reaction cross-diffusion systems, International Journal of Bifurcation and Chaos, 27 (2017), 1750049, 22pp. doi: 10.1142/S0218127417500493.

Figure 1.  Solutions of model (3) tend to a positive steady state with parameters (53) and initial condition (54)
[1]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[2]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[3]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[4]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[5]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[6]

Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090

[7]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[8]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[9]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[10]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[11]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[12]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[13]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[14]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[15]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[16]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[17]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[18]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[19]

Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156

[20]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (90)
  • HTML views (365)
  • Cited by (0)

Other articles
by authors

[Back to Top]