# American Institute of Mathematical Sciences

• Previous Article
Interlocked multi-node positive and negative feedback loops facilitate oscillations
• DCDS-B Home
• This Issue
• Next Article
Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient

## Non-autonomous reaction-diffusion equations with variable exponents and large diffusion

 Instituto de Matemática e Computação, Universidade Federal de Itajubá, 37500-903 - Itajubá - Minas Gerais, Brazil

Corresponding author: jacson@unifei.edu.br

Received  November 2017 Revised  March 2018 Published  June 2018

Fund Project: J. Simsen has been partially supported by FAPEMIG - processes PPM 00329-16 (Brazil) and CEX-APQ-00814-16. M.C. Gonçalves was supported with CAPES scholarship (Brazil)

In this work we prove continuity of solutions with respect to initial conditions and a couple of parameters and we prove upper semicontinuity of a family of pullback attractors for the problem
 $\left\{ {\begin{array}{*{20}{l}}{\frac{{\partial {u_s}}}{{\partial t}}(t) - {D_s}{\rm{div}}(|\nabla {u_s}{|^{{p_s}(x) - 2}}\nabla {u_s}) + C(t)|{u_s}{|^{{p_s}(x) - 2}}{u_s} = B({u_s}(t)),\;\;t > \tau ,}\\{{u_s}(\tau ) = {u_{\tau s}},}\end{array}} \right.$
under homogeneous Neumann boundary conditions,
 $u_{τ s}∈ H: = L^2(Ω),$
 $Ω\subset\mathbb{R}^n$
(
 $n≥ 1$
) is a smooth bounded domain,
 $B:H \to H$
is a globally Lipschitz map with Lipschitz constant
 $L≥ 0$
,
 $D_s∈[1,∞)$
,
 $C(·)∈ L^{∞}([τ, T];\mathbb{R}^+)$
is bounded from above and below and is monotonically nonincreasing in time,
 $p_s(·)∈ C(\bar{Ω})$
,
 $p_s^-: = \textrm{min}_{x∈\bar{Ω}}\;p_s(x)≥ p,$
 $p_s^+: = \textrm{max}_{x∈\bar{Ω}}\;p_s(x)≤ a,$
for all
 $s∈ \mathbb{N},$
when
 $p_s(·) \to p$
in
 $L^∞(Ω)$
and
 $D_s \to ∞$
as
 $s \to∞,$
with
 $a,p>2$
positive constants.
Citation: Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018217
##### References:
 [1] C. O. Alves, S. Shmarev, J. Simsen and M. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294. doi: 10.1016/j.jmaa.2016.05.024. [2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff International Publishing, 1976. [3] H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983. [4] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4. [5] A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations, J. Differential Equation, 116 (1995), 338-404. doi: 10.1006/jdeq.1995.1039. [6] A. N. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Anal., 17 (1991), 1139-1151. doi: 10.1016/0362-546X(91)90233-Q. [7] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16. doi: 10.1137/0135001. [8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8. [9] X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. [10] X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(Ω)$, J. Math. Anal. Appl., 262 (2001), 749-760. doi: 10.1006/jmaa.2001.7618. [11] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. [12] J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl., 118 (1986), 455-466. doi: 10.1016/0022-247X(86)90273-8. [13] P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equations with spatially variable exponents, Commun. Pure Appl. Anal., 13 (2014), 2543-2557. doi: 10.3934/cpaa.2014.13.2543. [14] S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang Journal of Mathematics, 47 (2016), 71-92. doi: 10.5556/j.tkjm.47.2016.1916. [15] J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion, Nonlinear Anal., 71 (2009), 4609-4617. doi: 10.1016/j.na.2009.03.041. [16] J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p−Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699. doi: 10.1016/j.jmaa.2013.12.019. [17] J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations, J. Math. Anal. Appl., 383 (2011), 71-81. doi: 10.1016/j.jmaa.2011.05.003. [18] J. Simsen, M. S. Simsen and M. R. T. Primo, Reaction diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506. doi: 10.3934/cpaa.2016.15.495. [19] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8. [20] S. Yotsutani, Evolution equations associated with the subdifferentials, J. Math. Soc. Japan, 31 (1978), 623-646. doi: 10.2969/jmsj/03140623.

show all references

##### References:
 [1] C. O. Alves, S. Shmarev, J. Simsen and M. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294. doi: 10.1016/j.jmaa.2016.05.024. [2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff International Publishing, 1976. [3] H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983. [4] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4. [5] A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations, J. Differential Equation, 116 (1995), 338-404. doi: 10.1006/jdeq.1995.1039. [6] A. N. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Anal., 17 (1991), 1139-1151. doi: 10.1016/0362-546X(91)90233-Q. [7] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16. doi: 10.1137/0135001. [8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8. [9] X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. [10] X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(Ω)$, J. Math. Anal. Appl., 262 (2001), 749-760. doi: 10.1006/jmaa.2001.7618. [11] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. [12] J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl., 118 (1986), 455-466. doi: 10.1016/0022-247X(86)90273-8. [13] P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equations with spatially variable exponents, Commun. Pure Appl. Anal., 13 (2014), 2543-2557. doi: 10.3934/cpaa.2014.13.2543. [14] S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang Journal of Mathematics, 47 (2016), 71-92. doi: 10.5556/j.tkjm.47.2016.1916. [15] J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion, Nonlinear Anal., 71 (2009), 4609-4617. doi: 10.1016/j.na.2009.03.041. [16] J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p−Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699. doi: 10.1016/j.jmaa.2013.12.019. [17] J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations, J. Math. Anal. Appl., 383 (2011), 71-81. doi: 10.1016/j.jmaa.2011.05.003. [18] J. Simsen, M. S. Simsen and M. R. T. Primo, Reaction diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506. doi: 10.3934/cpaa.2016.15.495. [19] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8. [20] S. Yotsutani, Evolution equations associated with the subdifferentials, J. Math. Soc. Japan, 31 (1978), 623-646. doi: 10.2969/jmsj/03140623.
Figure with $x'+(\sin(t)+1.1)|x|^2x = x$, with $p = 4$
Figure with $x'+(\sin(t)+1.1)|x|^7x = x$, with $p = 9$
Figure with $x'+C(t)|x|^2x = x$, with $p = 4$ and $C(t) = 1.1$ if $t\leq 0$ and $C(t) = e^{-t}+0.1$ if $t>0$
Figure with $x'+(e^{-t^2}+0.1)|x|^2x = x$, with $p = 4$
Figure with $x'+(\cos(t)+1.1)|x|^2x = x$, with $p = 4$
 [1] Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653 [2] Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495 [3] Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 [4] Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114 [5] Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189 [6] María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307 [7] Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015 [8] Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023 [9] Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116 [10] Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1 [11] Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143 [12] Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079 [13] Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032 [14] Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201 [15] Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399 [16] Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855 [17] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 [18] Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 [19] Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301 [20] Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

2017 Impact Factor: 0.972

## Tools

Article outline

Figures and Tables