February 2019, 24(2): 881-905. doi: 10.3934/dcdsb.2018211

Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two

School of Mathematical Sciences, Huaqiao University, Fujian 362021, China

* Corresponding author: Dingheng Pi

Received  October 2017 Revised  January 2018 Published  June 2018

Fund Project: This work was partially supported NNSF of China grants 11401228 and 11671040, Cultivation Program for Outstanding Young Scientific talents of Fujian Province in 2017 and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX401).

In this paper we consider an $n$ dimensional piecewise smooth dynamical system. This system has a co-dimension 2 switching manifold Σ which is an intersection of two co-dimension one switching manifolds Σ1 and Σ2. We investigate the relation of periodic orbit of PWS between periodic orbit of its regularized system. If this PWS system has an asymptotically stable crossing periodic orbit γ or sliding periodic orbit, we establish conditions to ensure that also a regularization of the given system has a unique, asymptotically stable, limit cycle in a neighbourhood of γ, converging to γ as the regularization parameter goes to 0.

Citation: Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211
References:
[1]

J. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998), 545-569.

[2]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, UK, 1996.

[3]

M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. 163, Springer-Verlag, London, 2008.

[4]

C. A. Buzzi, T. De Carvalho and R. D. Euzébio, On Poincaré-Bendixson Theorem and nontrivial minimal sets in planar nonsmooth vector fields, Publ. Mat., 62 (2018), 113–131, arXiv: 1307.6825v1 [math. DS]. doi: 10.5565/PUBLMAT6211806.

[5]

C. A. BuzziT. De Carvalho and P. R. Da Silva, Closed Poly-trajectories and Poincaré index of non-smooth vector fields on the plane, J. Dyn. Control. Sys., 19 (2013), 173-193. doi: 10.1007/s10883-013-9169-4.

[6]

C. A. BuzziT. De Carvalho and M. A. Teixeira, Birth of limit cycles bifurcating from a nonsmooth center, J. Math. Pure. Appl., 102 (2014), 36-47. doi: 10.1016/j.matpur.2013.10.013.

[7]

L. Dieci and F. Difonzo, A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179. doi: 10.1016/j.cam.2013.10.055.

[8]

L. Dieci and C. Elia, Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can we say what should happen?, DCDS -S, 9 (2016), 1039-1068. doi: 10.3934/dcdss.2016041.

[9]

L. DieciC. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832. doi: 10.1016/j.jde.2012.11.007.

[10]

L. DieciC. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb{R}^3$ and implications for stability of periodic orbits, J. Nonlinear Sci., 25 (2015), 1453-1471. doi: 10.1007/s00332-015-9265-6.

[11]

L. DieciC. Elia and D. Pi, Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, DCDS-B, 22 (2017), 3091-3112. doi: 10.3934/dcdsb.2017165.

[12]

L. Dieci and L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simulation, 81 (2011), 932-953. doi: 10.1016/j.matcom.2010.10.012.

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface, J. Dynam. Differential Equations, 25 (2013), 71-94. doi: 10.1007/s10884-013-9287-4.

[14]

Z. Du and Y. Li, Bifurcation of periodic orbits with multiple crossings in a class of planar Filippov systems, Math. Comput. Modelling, 55 (2012), 1072-1082. doi: 10.1016/j.mcm.2011.09.032.

[15]

A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer Academic, Netherlands, 1988. doi: 10.1007/978-94-015-7793-9.

[16]

R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 18, Springer-verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.

[17]

J. LlibreP. da Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331. doi: 10.1007/s10884-006-9057-7.

[18]

J. LlibreP. R. da Silva and M. A. Teixeira, Sliding vector fields via slow-fast systems, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 851-869.

[19]

J. LlibreP. R. da Silva and M. A. Teixeira, Study of singularities in nonsmooth dynamical systems via singular perturbation, SIAM. J. Applied Dynam. Sys., 8 (2009), 508-526. doi: 10.1137/080722886.

[20]

P. C. Müller, Calculation of lyapunov exponents for dynamic systems with discontinuities, Chaos, Solitons and Fractals, 5 (1995), 1671-1681. doi: 10.1016/0960-0779(94)00170-U.

[21]

D. Pi and X. Zhang, The sliding bifurcations in planar piecewise smooth differential systems, J. Dynam. Differential Equations, 25 (2013), 1001-1026. doi: 10.1007/s10884-013-9327-0.

[22]

L. A. Sanchez, Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems, J. Differential Equations, 246 (2009), 1978-1990. doi: 10.1016/j.jde.2008.10.015.

[23]

J. Sotomayor and A. L. Machado, Sructurally stable discontinuous vector fields on the plane, Qual. Theory of Dynamical Systems, 3 (2002), 227-250. doi: 10.1007/BF02969339.

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, International Conference on Differential Equations, Lisboa, (1995), 207–223.

[25]

S. TangJ. LiangY. Xiao and A. Robert, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J.Appl.Math., 72 (2012), 1061-1080. doi: 10.1137/110847020.

[26]

Y. WangM. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals, 83 (2016), 158-177.

[27]

H. R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations, 110 (1994), 143-156. doi: 10.1006/jdeq.1994.1063.

show all references

References:
[1]

J. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998), 545-569.

[2]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, UK, 1996.

[3]

M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. 163, Springer-Verlag, London, 2008.

[4]

C. A. Buzzi, T. De Carvalho and R. D. Euzébio, On Poincaré-Bendixson Theorem and nontrivial minimal sets in planar nonsmooth vector fields, Publ. Mat., 62 (2018), 113–131, arXiv: 1307.6825v1 [math. DS]. doi: 10.5565/PUBLMAT6211806.

[5]

C. A. BuzziT. De Carvalho and P. R. Da Silva, Closed Poly-trajectories and Poincaré index of non-smooth vector fields on the plane, J. Dyn. Control. Sys., 19 (2013), 173-193. doi: 10.1007/s10883-013-9169-4.

[6]

C. A. BuzziT. De Carvalho and M. A. Teixeira, Birth of limit cycles bifurcating from a nonsmooth center, J. Math. Pure. Appl., 102 (2014), 36-47. doi: 10.1016/j.matpur.2013.10.013.

[7]

L. Dieci and F. Difonzo, A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179. doi: 10.1016/j.cam.2013.10.055.

[8]

L. Dieci and C. Elia, Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can we say what should happen?, DCDS -S, 9 (2016), 1039-1068. doi: 10.3934/dcdss.2016041.

[9]

L. DieciC. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832. doi: 10.1016/j.jde.2012.11.007.

[10]

L. DieciC. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb{R}^3$ and implications for stability of periodic orbits, J. Nonlinear Sci., 25 (2015), 1453-1471. doi: 10.1007/s00332-015-9265-6.

[11]

L. DieciC. Elia and D. Pi, Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, DCDS-B, 22 (2017), 3091-3112. doi: 10.3934/dcdsb.2017165.

[12]

L. Dieci and L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simulation, 81 (2011), 932-953. doi: 10.1016/j.matcom.2010.10.012.

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface, J. Dynam. Differential Equations, 25 (2013), 71-94. doi: 10.1007/s10884-013-9287-4.

[14]

Z. Du and Y. Li, Bifurcation of periodic orbits with multiple crossings in a class of planar Filippov systems, Math. Comput. Modelling, 55 (2012), 1072-1082. doi: 10.1016/j.mcm.2011.09.032.

[15]

A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer Academic, Netherlands, 1988. doi: 10.1007/978-94-015-7793-9.

[16]

R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 18, Springer-verlag, Berlin, 2004. doi: 10.1007/978-3-540-44398-8.

[17]

J. LlibreP. da Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331. doi: 10.1007/s10884-006-9057-7.

[18]

J. LlibreP. R. da Silva and M. A. Teixeira, Sliding vector fields via slow-fast systems, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 851-869.

[19]

J. LlibreP. R. da Silva and M. A. Teixeira, Study of singularities in nonsmooth dynamical systems via singular perturbation, SIAM. J. Applied Dynam. Sys., 8 (2009), 508-526. doi: 10.1137/080722886.

[20]

P. C. Müller, Calculation of lyapunov exponents for dynamic systems with discontinuities, Chaos, Solitons and Fractals, 5 (1995), 1671-1681. doi: 10.1016/0960-0779(94)00170-U.

[21]

D. Pi and X. Zhang, The sliding bifurcations in planar piecewise smooth differential systems, J. Dynam. Differential Equations, 25 (2013), 1001-1026. doi: 10.1007/s10884-013-9327-0.

[22]

L. A. Sanchez, Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems, J. Differential Equations, 246 (2009), 1978-1990. doi: 10.1016/j.jde.2008.10.015.

[23]

J. Sotomayor and A. L. Machado, Sructurally stable discontinuous vector fields on the plane, Qual. Theory of Dynamical Systems, 3 (2002), 227-250. doi: 10.1007/BF02969339.

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, International Conference on Differential Equations, Lisboa, (1995), 207–223.

[25]

S. TangJ. LiangY. Xiao and A. Robert, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J.Appl.Math., 72 (2012), 1061-1080. doi: 10.1137/110847020.

[26]

Y. WangM. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals, 83 (2016), 158-177.

[27]

H. R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations, 110 (1994), 143-156. doi: 10.1006/jdeq.1994.1063.

Figure 2.  Sliding periodic orbit
Figure 1.  Crossing periodic orbit
[1]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

[2]

Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411

[3]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[4]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[5]

Todd Young. Partially hyperbolic sets from a co-dimension one bifurcation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 253-275. doi: 10.3934/dcds.1995.1.253

[6]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[7]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[8]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[9]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[10]

Luca Dieci, Cinzia Elia, Dingheng Pi. Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3091-3112. doi: 10.3934/dcdsb.2017165

[11]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[12]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[13]

Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004

[14]

Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191

[15]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[16]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[17]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[18]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[19]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[20]

Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]