• Previous Article
    Non-autonomous reaction-diffusion equations with variable exponents and large diffusion
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient
doi: 10.3934/dcdsb.2018208

A two-species weak competition system of reaction-diffusion-advection with double free boundaries

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

* Corresponding author

Received  August 2017 Revised  December 2017 Published  June 2018

In this paper, we investigate a two-species weak competition system of reaction-diffusion-advection with double free boundaries that represent the expanding front in a one-dimensional habitat, where a combination of random movement and advection is adopted by two competing species. The main goal is to understand the effect of small advection environment and dynamics of the two species through double free boundaries. We provide a spreading-vanishing dichotomy, which means that both of the two species either spread to the entire space successfully and survive in the new environment as time goes to infinity, or vanish and become extinct in the long run. Furthermore, if the spreading or vanishing of the two species occurs, some sufficient conditions via the initial data are established. When spreading of the two species happens, the long time behavior of solutions and estimates of spreading speed of both free boundaries are obtained.

Citation: Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018208
References:
[1]

I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph. D thesis, The Ohio State University in Columbus, 2012.

[2]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons Ltd., Chichester, UK, 2003. doi: 10.1002/0470871296.

[4]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518. doi: 10.1017/S0308210506000047.

[5]

X. F. ChenK. Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859. doi: 10.3934/dcds.2012.32.3841.

[6]

Q. L. ChenF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA Journal of Applied Mathematics, 82 (2017), 445-470. doi: 10.1093/imamat/hxw059.

[7]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary Ⅱ, J. Differential Equations, 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.

[8]

Y. H. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035. doi: 10.1016/j.jde.2012.04.014.

[9]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.

[10]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.

[11]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. (ser. B), 19 (2014), 3105-3132. doi: 10.3934/dcdsb.2014.19.3105.

[12]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724. doi: 10.4171/JEMS/568.

[13]

Y. H. Du and L. Ma, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124. doi: 10.1017/S0024610701002289.

[14]

H. GuZ. G. Lin and B. D. Lou, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53. doi: 10.1016/j.aml.2014.05.015.

[15]

H. GuZ. G. Lin and B. D. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117. doi: 10.1090/S0002-9939-2014-12214-3.

[16]

H. Gu and B. D. Lou, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016), 3991-4015. doi: 10.1016/j.jde.2015.11.002.

[17]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768. doi: 10.1016/j.jfa.2015.07.002.

[18]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.

[19]

J. S. Guo and C. H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27. doi: 10.1088/0951-7715/28/1/1.

[20]

D. HilhorstM. IidaM. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180. doi: 10.1007/BF03168569.

[21]

D. HilhorstM. Mimura and R. Schatzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285. doi: 10.1016/S1468-1218(02)00009-3.

[22]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051.

[23]

A. N. KolmogorovI. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique, Bull. Univ. Moskov. Ser. Internat., (1937), 1-25.

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, London, 1968.

[25]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015.

[26]

M. Li and Z. G. Lin, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. (Ser. B), 20 (2015), 2089-2105. doi: 10.3934/dcdsb.2015.20.2089.

[27]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.

[28]

N. A. Maidana and H. M. Yang, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417. doi: 10.1016/j.jtbi.2008.12.032.

[29]

M. MimuraY. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042.

[30]

M. MimuraY. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

[31]

M. MimuraY. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

[32]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[33]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394. doi: 10.1016/j.jde.2014.02.013.

[34]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508. doi: 10.1016/j.jfa.2015.10.014.

[35]

J. Wang and L. Zhang, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398. doi: 10.1016/j.jmaa.2014.09.055.

[36]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467. doi: 10.1016/j.na.2017.01.005.

[37]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672. doi: 10.1007/s10884-014-9363-4.

[38]

C. H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013), 2441-2455. doi: 10.3934/dcdsb.2013.18.2441.

[39]

C. H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897. doi: 10.1016/j.jde.2015.02.021.

[40]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263. doi: 10.1016/j.nonrwa.2013.10.003.

[41]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954. doi: 10.1016/j.jde.2013.12.008.

show all references

References:
[1]

I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph. D thesis, The Ohio State University in Columbus, 2012.

[2]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons Ltd., Chichester, UK, 2003. doi: 10.1002/0470871296.

[4]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518. doi: 10.1017/S0308210506000047.

[5]

X. F. ChenK. Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859. doi: 10.3934/dcds.2012.32.3841.

[6]

Q. L. ChenF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA Journal of Applied Mathematics, 82 (2017), 445-470. doi: 10.1093/imamat/hxw059.

[7]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary Ⅱ, J. Differential Equations, 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.

[8]

Y. H. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035. doi: 10.1016/j.jde.2012.04.014.

[9]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.

[10]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.

[11]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. (ser. B), 19 (2014), 3105-3132. doi: 10.3934/dcdsb.2014.19.3105.

[12]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724. doi: 10.4171/JEMS/568.

[13]

Y. H. Du and L. Ma, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124. doi: 10.1017/S0024610701002289.

[14]

H. GuZ. G. Lin and B. D. Lou, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53. doi: 10.1016/j.aml.2014.05.015.

[15]

H. GuZ. G. Lin and B. D. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117. doi: 10.1090/S0002-9939-2014-12214-3.

[16]

H. Gu and B. D. Lou, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016), 3991-4015. doi: 10.1016/j.jde.2015.11.002.

[17]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768. doi: 10.1016/j.jfa.2015.07.002.

[18]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.

[19]

J. S. Guo and C. H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27. doi: 10.1088/0951-7715/28/1/1.

[20]

D. HilhorstM. IidaM. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180. doi: 10.1007/BF03168569.

[21]

D. HilhorstM. Mimura and R. Schatzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285. doi: 10.1016/S1468-1218(02)00009-3.

[22]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051.

[23]

A. N. KolmogorovI. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique, Bull. Univ. Moskov. Ser. Internat., (1937), 1-25.

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, London, 1968.

[25]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015.

[26]

M. Li and Z. G. Lin, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. (Ser. B), 20 (2015), 2089-2105. doi: 10.3934/dcdsb.2015.20.2089.

[27]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.

[28]

N. A. Maidana and H. M. Yang, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417. doi: 10.1016/j.jtbi.2008.12.032.

[29]

M. MimuraY. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042.

[30]

M. MimuraY. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

[31]

M. MimuraY. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

[32]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[33]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394. doi: 10.1016/j.jde.2014.02.013.

[34]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508. doi: 10.1016/j.jfa.2015.10.014.

[35]

J. Wang and L. Zhang, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398. doi: 10.1016/j.jmaa.2014.09.055.

[36]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467. doi: 10.1016/j.na.2017.01.005.

[37]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672. doi: 10.1007/s10884-014-9363-4.

[38]

C. H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013), 2441-2455. doi: 10.3934/dcdsb.2013.18.2441.

[39]

C. H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897. doi: 10.1016/j.jde.2015.02.021.

[40]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263. doi: 10.1016/j.nonrwa.2013.10.003.

[41]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954. doi: 10.1016/j.jde.2013.12.008.

[1]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018240

[2]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[3]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[4]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[5]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[6]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[7]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[8]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

[9]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[11]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[12]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[13]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[14]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[15]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[16]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[17]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[18]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[19]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[20]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (46)
  • HTML views (238)
  • Cited by (0)

Other articles
by authors

[Back to Top]