# American Institute of Mathematical Sciences

February  2019, 24(2): 783-800. doi: 10.3934/dcdsb.2018207

## Global dynamics of a latent HIV infection model with general incidence function and multiple delays

 1 School of Science and Technology, Zhejiang International Studies University, Hangzhou 310023, China 2 Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan 3 College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan

* Corresponding author: yangyu@zisu.edu.cn

Received  August 2017 Revised  January 2018 Published  June 2018

Fund Project: The first author was partially supported by National Natural Science Foundation of China (No. 11501519) and the third author was partially supported by the Japan Society Promotion of Science) through the "Grant-in-Aid 26400211"

In this paper, we propose a latent HIV infection model with general incidence function and multiple delays. We derive the positivity and boundedness of solutions, as well as the existence and local stability of the infection-free and infected equilibria. By constructing Lyapunov functionals, we establish the global stability of the equilibria based on the basic reproduction number. We further study the global dynamics of this model with Holling type-Ⅱ incidence function through numerical simulations. Our results improve and generalize some existing ones. The results show that the prolonged time delay period of the maturation of the newly produced viruses may lead to the elimination of the viruses.

Citation: Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207
##### References:

show all references

##### References:
The solution converges to the infection-free equilibrium $E_0(10^6, 0, 0, 0)$ when $\mathcal{R}_0 = 0.1781<1$. The parameter values are taken from Data1 in Table 1
The solution converges to the infected equilibrium $E^*(9.0262\times10^5, 68.5219,944.7647, 8.1662\times10^4)$ when $\mathcal{R}_0 = 2.0126>1$. The parameter values are taken from Data2 in Table 1
The function $\mathcal{R}_0(\tau_3)$ with respect to $\tau_3$
Effect of different values of $\tau_3$ on the dynamics of system (12)
The solution converges to $E_0(10^6, 0, 0, 0)$ when $\tau_3$ becomes large. Here we choose $\tau_3 = 80$. The parameter values are taken from Data3 in Table 1
List of parameters
 Parameters Data1 Data2 Data3 Source $s$ (cells ml$^{-1}$ day$^{-1}$) 10$^{4}$ 10$^{4}$ 10$^{4}$ [4] $d_T$ (day$^{-1}$) 0.01 0.01 0.01 [30] $\beta$ (ml virion$^{-1}$ day$^{-1}$) 2.4$\times10^{-8}$ 2.4$\times10^{-8}$ 2.4$\times10^{-8}$ [43] $\alpha_1$ 0.00001 0.00001 0.00001 Assumed $k$ 1.5$\times10^{-6}$ 0.001 0.001 [4,2] $\delta_1$ (day$^{-1}$) 0.05 0.05 0.05 [2] $\delta_L$ (day$^{-1}$) 0.004 0.004 0.004 [4] $\delta_2$ (day$^{-1}$) 0.01 0.01 0.01 [28] $\alpha$ (day$^{-1}$) 0.01 0.01 0.01 [47] $\delta$ (day$^{-1}$) 0.7 1 1 [4,22] $N$ (virions cell$^{-1}$) 100 2000 2000 [4,47] $c$ (day$^{-1}$) 13 23 23 [4,45] $\tau_1$ 0.3 0.3 0.3 [2] $\tau_2$ 0.6 0.6 0.6 [2] $\tau_3$ 0.6 0.6 Assumed [41]
 Parameters Data1 Data2 Data3 Source $s$ (cells ml$^{-1}$ day$^{-1}$) 10$^{4}$ 10$^{4}$ 10$^{4}$ [4] $d_T$ (day$^{-1}$) 0.01 0.01 0.01 [30] $\beta$ (ml virion$^{-1}$ day$^{-1}$) 2.4$\times10^{-8}$ 2.4$\times10^{-8}$ 2.4$\times10^{-8}$ [43] $\alpha_1$ 0.00001 0.00001 0.00001 Assumed $k$ 1.5$\times10^{-6}$ 0.001 0.001 [4,2] $\delta_1$ (day$^{-1}$) 0.05 0.05 0.05 [2] $\delta_L$ (day$^{-1}$) 0.004 0.004 0.004 [4] $\delta_2$ (day$^{-1}$) 0.01 0.01 0.01 [28] $\alpha$ (day$^{-1}$) 0.01 0.01 0.01 [47] $\delta$ (day$^{-1}$) 0.7 1 1 [4,22] $N$ (virions cell$^{-1}$) 100 2000 2000 [4,47] $c$ (day$^{-1}$) 13 23 23 [4,45] $\tau_1$ 0.3 0.3 0.3 [2] $\tau_2$ 0.6 0.6 0.6 [2] $\tau_3$ 0.6 0.6 Assumed [41]
 [1] Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 [2] Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 [3] Pierre Gabriel. Global stability for the prion equation with general incidence. Mathematical Biosciences & Engineering, 2015, 12 (4) : 789-801. doi: 10.3934/mbe.2015.12.789 [4] Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397 [5] Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 [6] Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002 [7] Ábel Garab, Veronika Kovács, Tibor Krisztin. Global stability of a price model with multiple delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6855-6871. doi: 10.3934/dcds.2016098 [8] C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837 [9] Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 [10] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 [11] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences & Engineering, 2013, 10 (1) : 19-35. doi: 10.3934/mbe.2013.10.19 [12] Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785 [13] Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 [14] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61 [15] A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701 [16] Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016 [17] Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749 [18] Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 [19] Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134 [20] Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

2018 Impact Factor: 1.008