# American Institute of Mathematical Sciences

• Previous Article
Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion
• DCDS-B Home
• This Issue
• Next Article
Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps
February  2019, 24(2): 637-655. doi: 10.3934/dcdsb.2018200

## Advection-diffusion equation on a half-line with boundary Lévy noise

 Friedrich Schiller University Jena, School of Mathematics and Computer Science, Institute for Mathematics, Ernst-Abbe-Platz 2, 07743 Jena, Germany

Received  May 2017 Revised  February 2018 Published  June 2018

In this paper we study a one-dimensional linear advection-diffusion equation on a half-line driven by a Lévy boundary noise. The problem is motivated by the study of contaminant transport models under random sources (P. P. Wang and C. Zheng, Ground water, 43 (2005), [34]). We determine the closed form formulae for mild solutions of this equation with Dirichlet and Neumann noise and study approximations of these solutions by classical solutions obtained with the help of Wong-Zakai approximations of the driving Lévy process.

Citation: Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200
##### References:

show all references

##### References:
A sample path of an $\alpha$-stable Lévy subordinator $Z$ with ${\bf E} \text{e}^{-\lambda Z_1} = \text{e}^{-\lambda^\alpha}$ for $\alpha = 0.9$ (a); solutions $t\mapsto u_D(t, x)$ of equation (2.2) with Dirichlet boundary noise for $\nu = -1$, $x = 1$ (b) and $\nu = 1$, $x = 1$ (d); the concentration curve $x\mapsto u_D(t, x)$ for $\nu = 1$, $t = 55$ (c)
A sample path of a symmetric $\alpha$-stable Lévy process $Z$ with ${\bf{E}} \text{e}^{-\text{i} \lambda Z_1} = \text{e}^{-|\lambda|^\alpha}$ for $\alpha = 1.75$ (a); the solution $t\mapsto u_D(t, x)$ of equation (2.2) with Dirichlet boundary noise for $\nu = 1$, $x = 1$
The scales $c(x)$ of the limiting distribution in the Dirichlet case for $\nu = \pm1, 0$ (left), and the Neumann case for $\nu = -1$ (right); $\alpha = 0.9$, $c = 1$
 [1] Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-31. doi: 10.3934/dcdsb.2019104 [2] Yeping Li, Jie Liao. Stability and $L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 [3] Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068 [4] Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $L_1$ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 [5] Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $l_1$ norm measure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019061 [6] Tuan Anh Dao, Michael Reissig. $L^1$ estimates for oscillating integrals and their applications to semi-linear models with $\sigma$-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222 [7] Zalman Balanov, Yakov Krasnov. On good deformations of $A_m$-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122 [8] Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008 [9] Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154 [10] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 [11] Connor Mooney, Ovidiu Savin. Regularity results for the equation $u_{11}u_{22} = 1$. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-12. doi: 10.3934/dcds.2019235 [12] Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 [13] Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 [14] Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $L^2$-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122 [15] Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2499-2526. doi: 10.3934/dcdsb.2018065 [16] Jun Wang, Xing Tao Wang. Sparse signal reconstruction via the approximations of $\ell_{0}$ quasinorm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019035 [17] Hideaki Takagi. Times until service completion and abandonment in an M/M/$m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028 [18] Koya Nishimura. Global existence for the Boltzmann equation in $L^r_v L^\infty_t L^\infty_x$ spaces. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083 [19] Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025 [20] Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n}$. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

2018 Impact Factor: 1.008