February 2019, 24(2): 587-613. doi: 10.3934/dcdsb.2018198

Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation

1. 

College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China

2. 

School of mathematics and information technology, Jiangsu Second Normal University, Nanjing 210013, China

3. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

4. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

* Corresponding author: Liangjian Hu

Received  May 2017 Revised  January 2018 Published  June 2018

Fund Project: The author Wei Mao is supported by the National Natural Science Foundation of China (11401261) and "333 High-level Personnel Training Project" of Jiangsu Province. The author Liangjian Hu is supported by the National Natural Science Foundation of China (11471071). The author Xuerong Mao is supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1)

In this paper, we are concerned with the asymptotic properties and numerical analysis of the solution to hybrid stochastic differential equations with jumps. Applying the theory of M-matrices, we will study the $ p $th moment asymptotic boundedness and stability of the solution. Under the non-linear growth condition, we also show the convergence in probability of the Euler-Maruyama approximate solution to the true solution. Finally, some examples are provided to illustrate our new results.

Citation: Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198
References:
[1]

S. AlbeverioZ. Brzezniak and J. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl., 371 (2010), 309-322. doi: 10.1016/j.jmaa.2010.05.039.

[2]

W. J. Anderson, Continuous-Time Markov Chains, Springer, Berlin, 1991. doi: 10.1007/978-1-4612-3038-0.

[3]

D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323.

[4]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Levy noise, J. Appl. Probab., 46 (2009), 1116-1129. doi: 10.1239/jap/1261670692.

[5]

J. BaoB. BottcherX. Mao and C. Yuan, Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 236 (2011), 119-131. doi: 10.1016/j.cam.2011.05.043.

[6]

M. Baran, Approximations for solutions of Levy-Type Stochastic Differential Equations, Stochastic Analysis and Applications., 27 (2009), 924-961. doi: 10.1080/07362990903136447.

[7]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 205 (2007), 982-1001. doi: 10.1016/j.cam.2006.03.040.

[8]

A. Gardon, The order of approximations for solutions of Ito-type stochastic differential equations with jumps, Stoch. Anal. Appl., 22 (2004), 679-699. doi: 10.1081/SAP-120030451.

[9]

D. J. Higham and P. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005), 101-119. doi: 10.1007/s00211-005-0611-8.

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control. Lett., 62 (2013), 178-187. doi: 10.1016/j.sysconle.2012.11.009.

[11]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332. doi: 10.1109/TAC.2013.2256014.

[12]

J. Jakubowski and M. Nieweglowski, Jump-diffusion processes in random environments, J. Differential Equations., 257 (2014), 2671-2703. doi: 10.1016/j.jde.2014.05.052.

[13]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and Noordhoff, Alphen, 1980.

[14]

H. Kunita, Stochastic diffrential equations based on Lévy processes and stochastic flows of diffomorphisms in Real and Stochastic Analysis, New Perspectives, Berlin, (2004), 305-373.

[15]

X. LiX. Mao and Y. Shen, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Difference Equ. Appl., 16 (2010), 195-207. doi: 10.1080/10236190802695456.

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and pth moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automa. Control., 56 (2011), 1985-1990. doi: 10.1109/TAC.2011.2146970.

[17]

J. Luo and K. Liu, Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl., 118 (2008), 864-895. doi: 10.1016/j.spa.2007.06.009.

[18]

X. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 236 (1999), 350-369. doi: 10.1006/jmaa.1999.6435.

[19]

X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002), 125-142. doi: 10.1006/jmaa.2001.7803.

[20]

X. Mao and M. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069. doi: 10.1080/07362990500118637.

[21]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London, 2006. doi: 10.1142/p473.

[22]

X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.

[23]

X. Mao, Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217 (2011), 5512-5524. doi: 10.1016/j.amc.2010.12.023.

[24]

G. MarionX. Mao and E. Renshaw, Convergence of the Euler shceme for a class of stochastic Differential Equations, International Mathematical Journal., 1 (2002), 9-22.

[25]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685. doi: 10.1016/j.amc.2014.03.132.

[26]

E. MordeckiA. Szepessy and R. Tempone, Adaptive weak approximation of diffusions with jumps, SIAM Journal on Numerical Analysis., 46 (2008), 1732-1768. doi: 10.1137/060669632.

[27]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer, Berlin, 2005.

[28]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. doi: 10.1007/978-3-642-13694-8.

[29]

V. Popov, Hyperstability of control system, Springer, Berlin, 1973.

[30]

S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, Berlin, 2005.

[31]

M. SongL. Hu and X. Mao, Khasminskii-Type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1697-1714. doi: 10.3934/dcdsb.2013.18.1697.

[32]

I. S. Wee, Stability for multidimensional jump-diffusion processes, Stochastic Process. Appl., 80 (1999), 193-209. doi: 10.1016/S0304-4149(98)00078-7.

[33]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control., 82 (2009), 2150-2157. doi: 10.1080/00207170902968108.

[34]

F. Wu and S. Hu, Stochastic suppression and stabilization of delay differential systems, International Journal of Robust and Nonlinear Control., 21 (2011), 488-500. doi: 10.1002/rnc.1606.

[35]

F. Wu and S. Hu, The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, 32 (2012), 1065-1094.

[36]

F. Xi, On the stability of a jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600. doi: 10.1016/j.jmaa.2007.10.018.

[37]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Process. Appl., 119 (2009), 2198-2221. doi: 10.1016/j.spa.2008.11.001.

[38]

F. Xi and G. Yin, Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching, J. Math. Anal. Appl., 400 (2013), 460-474. doi: 10.1016/j.jmaa.2012.10.062.

[39]

Z. Yang and G. Yin, Stability of nonlinear regime-switching jump diffusion, Nonlinear Anal., 75 (2012), 3854-3873. doi: 10.1016/j.na.2012.02.007.

[40]

G. Yin and C. Zhu, Hybrid Switching Diffusion: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[41]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549. doi: 10.1137/080738301.

[42]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83. doi: 10.1016/j.amc.2015.04.022.

[43]

C. Yuan and W. Glover, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Comput. Appl. Math., 194 (2006), 207-226. doi: 10.1016/j.cam.2005.07.004.

[44]

C. Yuan and J. Bao, On the exponential stability of switching-diffusion processes with jumps, Quart. Appl. Math., 71 (2013), 311-329. doi: 10.1090/S0033-569X-2012-01292-8.

[45]

S. ZhouM. Xue and F. Wu, Robustness of hybrid neutral differential systems perturbed by noise, Journal of Systems Science and Complexity, 27 (2014), 1138-1157. doi: 10.1007/s11424-014-2037-9.

[46]

Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142. doi: 10.1016/j.jmaa.2014.02.016.

show all references

References:
[1]

S. AlbeverioZ. Brzezniak and J. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl., 371 (2010), 309-322. doi: 10.1016/j.jmaa.2010.05.039.

[2]

W. J. Anderson, Continuous-Time Markov Chains, Springer, Berlin, 1991. doi: 10.1007/978-1-4612-3038-0.

[3]

D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323.

[4]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Levy noise, J. Appl. Probab., 46 (2009), 1116-1129. doi: 10.1239/jap/1261670692.

[5]

J. BaoB. BottcherX. Mao and C. Yuan, Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 236 (2011), 119-131. doi: 10.1016/j.cam.2011.05.043.

[6]

M. Baran, Approximations for solutions of Levy-Type Stochastic Differential Equations, Stochastic Analysis and Applications., 27 (2009), 924-961. doi: 10.1080/07362990903136447.

[7]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 205 (2007), 982-1001. doi: 10.1016/j.cam.2006.03.040.

[8]

A. Gardon, The order of approximations for solutions of Ito-type stochastic differential equations with jumps, Stoch. Anal. Appl., 22 (2004), 679-699. doi: 10.1081/SAP-120030451.

[9]

D. J. Higham and P. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005), 101-119. doi: 10.1007/s00211-005-0611-8.

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control. Lett., 62 (2013), 178-187. doi: 10.1016/j.sysconle.2012.11.009.

[11]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332. doi: 10.1109/TAC.2013.2256014.

[12]

J. Jakubowski and M. Nieweglowski, Jump-diffusion processes in random environments, J. Differential Equations., 257 (2014), 2671-2703. doi: 10.1016/j.jde.2014.05.052.

[13]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and Noordhoff, Alphen, 1980.

[14]

H. Kunita, Stochastic diffrential equations based on Lévy processes and stochastic flows of diffomorphisms in Real and Stochastic Analysis, New Perspectives, Berlin, (2004), 305-373.

[15]

X. LiX. Mao and Y. Shen, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Difference Equ. Appl., 16 (2010), 195-207. doi: 10.1080/10236190802695456.

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and pth moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automa. Control., 56 (2011), 1985-1990. doi: 10.1109/TAC.2011.2146970.

[17]

J. Luo and K. Liu, Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl., 118 (2008), 864-895. doi: 10.1016/j.spa.2007.06.009.

[18]

X. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 236 (1999), 350-369. doi: 10.1006/jmaa.1999.6435.

[19]

X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002), 125-142. doi: 10.1006/jmaa.2001.7803.

[20]

X. Mao and M. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069. doi: 10.1080/07362990500118637.

[21]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London, 2006. doi: 10.1142/p473.

[22]

X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.

[23]

X. Mao, Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217 (2011), 5512-5524. doi: 10.1016/j.amc.2010.12.023.

[24]

G. MarionX. Mao and E. Renshaw, Convergence of the Euler shceme for a class of stochastic Differential Equations, International Mathematical Journal., 1 (2002), 9-22.

[25]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685. doi: 10.1016/j.amc.2014.03.132.

[26]

E. MordeckiA. Szepessy and R. Tempone, Adaptive weak approximation of diffusions with jumps, SIAM Journal on Numerical Analysis., 46 (2008), 1732-1768. doi: 10.1137/060669632.

[27]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer, Berlin, 2005.

[28]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. doi: 10.1007/978-3-642-13694-8.

[29]

V. Popov, Hyperstability of control system, Springer, Berlin, 1973.

[30]

S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, Berlin, 2005.

[31]

M. SongL. Hu and X. Mao, Khasminskii-Type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1697-1714. doi: 10.3934/dcdsb.2013.18.1697.

[32]

I. S. Wee, Stability for multidimensional jump-diffusion processes, Stochastic Process. Appl., 80 (1999), 193-209. doi: 10.1016/S0304-4149(98)00078-7.

[33]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control., 82 (2009), 2150-2157. doi: 10.1080/00207170902968108.

[34]

F. Wu and S. Hu, Stochastic suppression and stabilization of delay differential systems, International Journal of Robust and Nonlinear Control., 21 (2011), 488-500. doi: 10.1002/rnc.1606.

[35]

F. Wu and S. Hu, The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, 32 (2012), 1065-1094.

[36]

F. Xi, On the stability of a jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600. doi: 10.1016/j.jmaa.2007.10.018.

[37]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Process. Appl., 119 (2009), 2198-2221. doi: 10.1016/j.spa.2008.11.001.

[38]

F. Xi and G. Yin, Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching, J. Math. Anal. Appl., 400 (2013), 460-474. doi: 10.1016/j.jmaa.2012.10.062.

[39]

Z. Yang and G. Yin, Stability of nonlinear regime-switching jump diffusion, Nonlinear Anal., 75 (2012), 3854-3873. doi: 10.1016/j.na.2012.02.007.

[40]

G. Yin and C. Zhu, Hybrid Switching Diffusion: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[41]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549. doi: 10.1137/080738301.

[42]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83. doi: 10.1016/j.amc.2015.04.022.

[43]

C. Yuan and W. Glover, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Comput. Appl. Math., 194 (2006), 207-226. doi: 10.1016/j.cam.2005.07.004.

[44]

C. Yuan and J. Bao, On the exponential stability of switching-diffusion processes with jumps, Quart. Appl. Math., 71 (2013), 311-329. doi: 10.1090/S0033-569X-2012-01292-8.

[45]

S. ZhouM. Xue and F. Wu, Robustness of hybrid neutral differential systems perturbed by noise, Journal of Systems Science and Complexity, 27 (2014), 1138-1157. doi: 10.1007/s11424-014-2037-9.

[46]

Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142. doi: 10.1016/j.jmaa.2014.02.016.

[1]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018307

[2]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[3]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[4]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[5]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[6]

Mei Li, Hongjun Gao, Bingjun Wang. Analysis of a non-autonomous mutualism model driven by Levy jumps. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1189-1202. doi: 10.3934/dcdsb.2016.21.1189

[7]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[8]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[9]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[10]

John A. D. Appleby, Jian Cheng, Alexandra Rodkina. Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation. Conference Publications, 2011, 2011 (Special) : 79-90. doi: 10.3934/proc.2011.2011.79

[11]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[12]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[13]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[14]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[15]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[16]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[17]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[18]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[19]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[20]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

2017 Impact Factor: 0.972

Article outline

[Back to Top]