• Previous Article
    Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere
  • DCDS-B Home
  • This Issue
  • Next Article
    Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type
December 2018, 23(10): 4329-4360. doi: 10.3934/dcdsb.2018167

Stabilization of turning processes using spindle feedback with state-dependent delay

Department of Mathematical Sciences, The University of Texas at Dallas, 800 W. Campbell Road, FO. 35, Richardson, TX, 75080, USA

* Corresponding author: Qingwen Hu

Received  March 2017 Revised  February 2018 Published  June 2018

We develop a stabilization strategy of turning processes by means of delayed spindle control. We show that turning processes which contain intrinsic state-dependent delays can be stabilized by a spindle control with state-dependent delay, and develop analytical description of the stability region in the parameter space. Numerical simulations stability region are also given to illustrate the general results.

Citation: Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167
References:
[1]

Y. Altintas and E. Budak, Analytical prediction of stability lobes in milling, CIRP Annals - Manufacturing Technology 44, 1 (1995), 357-362.

[2]

D. Bachrathy, G. Stépán and J. Turi, State dependent regenerative effect in milling processes, J. Comput. Nonlinear Dynam. 6, 4 (2011), Article Number: 041002. doi: 10.1115/1.4003624.

[3]

B. Balachandran and M. X. Zhao, A mechanics based model for study of dynamics of milling operations, Meccanica, 2 (2000), 89-109.

[4]

Z. BalanovQ. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold-type state-dependent delay, J. Differential Equations, 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053.

[5]

D. E. Gilsinn, Estimating critical hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter, Nonlinear Dynam., 30 (2002), 103-154. doi: 10.1023/A:1020455821894.

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Chapter 5: Functional differential equations with state-dependent delays: Theory and applications. In Handbook of Differential Equations: Ordinary Differential Equations, P. D. A. CaÑada and A. Fonda, Eds., vol. 3. North-Holland, 2006,435–545. doi: 10.1016/S1874-5725(06)80009-X.

[7]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[8]

Q. HuW. Krawcewicz and J. Turi, Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24. doi: 10.1137/110823468.

[9]

Q. HuW. Krawcewicz and J. Turi, Global stability lobes of a state-dependent model of turning processes, SIAM Journal on Applied Mathematics, 72 (2012), 1383-1405. doi: 10.1137/110859051.

[10]

T. Insperger and G. Stépán, Stability analysis of turning with periodic spindle speed maching, J. Manuf. Sci. Eng., 122 (2000), 391-397.

[11]

T. InspergerG. Stépán and J. Turi, State-dependent delay in regenerative turning processes, Nonlinear Dyn., 47 (2007), 275-283.

[12]

F. Ismail and E. Soliman, A new method for the identification of stability lobes in machining, Int. J. Mach. Tools Manufacture, 37 (1997), 763-774.

[13]

F. Koenigsberger and J. Tlusty, Machine Tool Structures, vol. 1. Pergamon Press, 1970.

[14]

W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Johns Wiley & Sons, New York, 1997.

[15]

X. Long and B. Balachandran, Stability of up-milling and down-milling operations with variable spindle speeds, J. Vibration and Control, 16 (2010), 1151-1168. doi: 10.1177/1077546309341131.

[16]

A. Otto and G. Radons, The influence of tangential and torsional vibrations on the stability lobes in metal cutting, Nonlinear Dyn., 82 (2015), 1989-2000.

[17]

M. Pakdemirli and A. G. Ulsoy, Perturbation analysis of spindle speed variation in machine tool chatter, J. Vibration and Control, 3 (1996), 261-278.

[18]

J. S. SextonR. D. Milne and B. J. Stone, A stability analysis of single point machining with varying spindle control, Appl. Math. Modeling, 1 (1977), 310-318. doi: 10.1016/0307-904X(77)90062-2.

[19]

S. Smith and J. Tlusty, Update on high-speed milling dynamics, ASME Journal of Engineering for Industry, 112 (1990), 142-149.

[20]

H. Smith, Existence and uniqueness of global solutions for a size-structured population model of an insect population with variable instar duration, Rocky Mountain J. Math., 24 (1994), 311-334. doi: 10.1216/rmjm/1181072468.

[21]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Sci. tech., UK, 1989.

[22]

E. Stone and S. Campbell, Stability and bifurcation analysis of a nonlinear dde model for drilling, J. Nonlinear Science, 14 (2004), 27-57. doi: 10.1007/s00332-003-0553-1.

[23]

F. W. Taylor, On the art of cutting metals, Oscillation and Dynamics in Delay Equations, Contemporary Mathematics, 1907.

[24]

S. A. Tobias, Machine Tool Vibration, Blackie, London, 1965.

[25]

S. A. Tobias and W. Fishwick, Theory of regenerative machine tool chatter, The Engineer, London, 205 (1958), 199-203.

[26]

H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: 10.1016/j.jde.2003.07.001.

show all references

References:
[1]

Y. Altintas and E. Budak, Analytical prediction of stability lobes in milling, CIRP Annals - Manufacturing Technology 44, 1 (1995), 357-362.

[2]

D. Bachrathy, G. Stépán and J. Turi, State dependent regenerative effect in milling processes, J. Comput. Nonlinear Dynam. 6, 4 (2011), Article Number: 041002. doi: 10.1115/1.4003624.

[3]

B. Balachandran and M. X. Zhao, A mechanics based model for study of dynamics of milling operations, Meccanica, 2 (2000), 89-109.

[4]

Z. BalanovQ. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold-type state-dependent delay, J. Differential Equations, 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053.

[5]

D. E. Gilsinn, Estimating critical hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter, Nonlinear Dynam., 30 (2002), 103-154. doi: 10.1023/A:1020455821894.

[6]

F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Chapter 5: Functional differential equations with state-dependent delays: Theory and applications. In Handbook of Differential Equations: Ordinary Differential Equations, P. D. A. CaÑada and A. Fonda, Eds., vol. 3. North-Holland, 2006,435–545. doi: 10.1016/S1874-5725(06)80009-X.

[7]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[8]

Q. HuW. Krawcewicz and J. Turi, Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24. doi: 10.1137/110823468.

[9]

Q. HuW. Krawcewicz and J. Turi, Global stability lobes of a state-dependent model of turning processes, SIAM Journal on Applied Mathematics, 72 (2012), 1383-1405. doi: 10.1137/110859051.

[10]

T. Insperger and G. Stépán, Stability analysis of turning with periodic spindle speed maching, J. Manuf. Sci. Eng., 122 (2000), 391-397.

[11]

T. InspergerG. Stépán and J. Turi, State-dependent delay in regenerative turning processes, Nonlinear Dyn., 47 (2007), 275-283.

[12]

F. Ismail and E. Soliman, A new method for the identification of stability lobes in machining, Int. J. Mach. Tools Manufacture, 37 (1997), 763-774.

[13]

F. Koenigsberger and J. Tlusty, Machine Tool Structures, vol. 1. Pergamon Press, 1970.

[14]

W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Johns Wiley & Sons, New York, 1997.

[15]

X. Long and B. Balachandran, Stability of up-milling and down-milling operations with variable spindle speeds, J. Vibration and Control, 16 (2010), 1151-1168. doi: 10.1177/1077546309341131.

[16]

A. Otto and G. Radons, The influence of tangential and torsional vibrations on the stability lobes in metal cutting, Nonlinear Dyn., 82 (2015), 1989-2000.

[17]

M. Pakdemirli and A. G. Ulsoy, Perturbation analysis of spindle speed variation in machine tool chatter, J. Vibration and Control, 3 (1996), 261-278.

[18]

J. S. SextonR. D. Milne and B. J. Stone, A stability analysis of single point machining with varying spindle control, Appl. Math. Modeling, 1 (1977), 310-318. doi: 10.1016/0307-904X(77)90062-2.

[19]

S. Smith and J. Tlusty, Update on high-speed milling dynamics, ASME Journal of Engineering for Industry, 112 (1990), 142-149.

[20]

H. Smith, Existence and uniqueness of global solutions for a size-structured population model of an insect population with variable instar duration, Rocky Mountain J. Math., 24 (1994), 311-334. doi: 10.1216/rmjm/1181072468.

[21]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Sci. tech., UK, 1989.

[22]

E. Stone and S. Campbell, Stability and bifurcation analysis of a nonlinear dde model for drilling, J. Nonlinear Science, 14 (2004), 27-57. doi: 10.1007/s00332-003-0553-1.

[23]

F. W. Taylor, On the art of cutting metals, Oscillation and Dynamics in Delay Equations, Contemporary Mathematics, 1907.

[24]

S. A. Tobias, Machine Tool Vibration, Blackie, London, 1965.

[25]

S. A. Tobias and W. Fishwick, Theory of regenerative machine tool chatter, The Engineer, London, 205 (1958), 199-203.

[26]

H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: 10.1016/j.jde.2003.07.001.

Figure 1.  Turning model
Figure 2.  The graphs of $y = f(\beta) = \frac{\sin\beta}{\cos\beta(1-\cos\beta)}$ and $y = g(\beta) = -\frac{2q}{\beta}$
Figure 3.  Graphs of $y = \delta(\beta) = \frac{\xi\beta^2(1-\cos\beta)+\beta^3\sin\beta}{2q(1-\cos\beta)+\beta\sin\beta}$ and $y = h_2(\beta) = -\frac{q\beta(1-\cos\beta)-\xi\beta-q\xi\sin\beta}{\xi\beta(1-\cos\beta)+\beta^2\sin\beta}$ with $\xi<2q$
Figure 4.  The graphs of $y = F(\beta) = \beta\cot\frac{\beta}{2}$, and those of $y = G(\beta)$, $y = H(\beta)$ which are the upper and lower part of the curve $\frac{(y+q)^2}{q^2}+\frac{\beta^2}{\left(\frac{q^2}{1-\frac{2q}{\xi}}\right)} = 1$, $\beta>0$, respectively
Figure 5.  The curves of $(\delta, \, h_1)$, $\delta>0$ where $\beta_1\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt{5}-8} = 8.955929<q$
Figure 6.  The shaded region shows the details of the stability region of Figure 5 near the origin $(0, \, 0)$
Figure 7.  The curves of $(\delta, \, h_1)$, $\delta>0$ where $\beta_1\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt{5}-8} = 8.955929>q$. The shaded region near the origin $(0, \, 0)$ is the stability region
Figure 8.  The curves of $(\delta, \, h_2)$, $\delta>0$, $h_2>0$ where $\xi<2q$. The shaded region near the origin $(0, \, 0)$ is the stability region
Figure 9.  The curves of $(\delta, \, h_2)$, $\delta>0, \, h_2>0$ with $\xi>2q$. The connected region near the origin $(0, \, 0)$ without crossing the lobes, or the vertical line $\delta = 0$ or the horizontal line $h_2 = 0$ is the stability region
[1]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[2]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[3]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[4]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[5]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[6]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[7]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[8]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[9]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[10]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[11]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[12]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[13]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[14]

Samir Adly, Ba Khiet Le. Unbounded state-dependent sweeping processes with perturbations in uniformly convex and q-uniformly smooth Banach spaces. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 81-95. doi: 10.3934/naco.2018005

[15]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[16]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[17]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

[18]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[19]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[20]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (43)
  • HTML views (220)
  • Cited by (0)

Other articles
by authors

[Back to Top]