January 2019, 24(1): 1-17. doi: 10.3934/dcdsb.2018161

Modulus metrics on networks

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

* Corresponding author: Pietro Poggi-Corradini

Received  January 2017 Revised  March 2018 Published  June 2018

Fund Project: The authors are supported by NSF n. 1515810

The concept of $p$-modulus gives a way to measure the richness of a family of objects on a graph. In this paper, we investigate the families of connecting walks between two fixed nodes and show how to use $p$-modulus to form a parametrized family of graph metrics that generalize several well-known and widely-used metrics. We also investigate a characteristic of metrics called the "antisnowflaking exponent" and present some numerical findings supporting a conjecture about the new metrics. We end with explicit computations of the new metrics on some selected graphs.

Citation: Nathan Albin, Nethali Fernando, Pietro Poggi-Corradini. Modulus metrics on networks. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 1-17. doi: 10.3934/dcdsb.2018161
References:
[1]

N. Albin, J. Clemens, N. Fernando and P. Poggi-Corradini, Blocking duality for p-modulus on networks and applications, arXiv: 1612.00435.

[2]

N. AlbinM. BrunnerR. PerezP. Poggi-Corradini and N. Wiens, Modulus on graphs as a generalization of standard graph theoretic quantities, Conform. Geom. Dyn., 19 (2015), 298-317. doi: 10.1090/ecgd/287.

[3]

N. Albin and P. Poggi-Corradini, Minimal subfamilies and the probabilistic interpretation for modulus on graphs, J. Anal., 24 (2016), 183-208. doi: 10.1007/s41478-016-0002-9.

[4]

N. Albin, F. D. Sahneh, M. Goering and P. Poggi-Corradini, Modulus of families of walks on graphs, in Complex Analysis and Dynamical Systems VII, vol. 699 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 35–55. doi: 10.1090/conm/699/14080.

[5]

G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems (2006), 1695, URL http://igraph.sf.net.

[6]

S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 17 (2016), Paper No. 83, 5 pp.

[7]

J. DingJ. R. Lee and Y. Peres, Cover times, blanket times, and majorizing measures, Ann. of Math., 175 (2012), 1409-1471. doi: 10.4007/annals.2012.175.3.8.

[8]

P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, vol. 22 of Carus Mathematical Monographs, Mathematical Association of America, Washington, DC, 1984.

[9]

M. Goering, N. Albin, F. Sahneh, C. Scoglio and P. Poggi-Corradini, Numerical investigation of metrics for epidemic processes on graphs, in 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, 1317–1322. doi: 10.1109/ACSSC.2015.7421356.

[10]

E. Jones, T. Oliphant and P. Peterson et al., SciPy: Open source scientific tools for Python, 2001–, URL http://www.scipy.org/, [Online; accessed 2/28/2018].

[11]

D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009, With a chapter by James G. Propp and David B. Wilson.

[12]

D. A. Spielman, Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 45-61. doi: 10.1090/bull/1557.

show all references

References:
[1]

N. Albin, J. Clemens, N. Fernando and P. Poggi-Corradini, Blocking duality for p-modulus on networks and applications, arXiv: 1612.00435.

[2]

N. AlbinM. BrunnerR. PerezP. Poggi-Corradini and N. Wiens, Modulus on graphs as a generalization of standard graph theoretic quantities, Conform. Geom. Dyn., 19 (2015), 298-317. doi: 10.1090/ecgd/287.

[3]

N. Albin and P. Poggi-Corradini, Minimal subfamilies and the probabilistic interpretation for modulus on graphs, J. Anal., 24 (2016), 183-208. doi: 10.1007/s41478-016-0002-9.

[4]

N. Albin, F. D. Sahneh, M. Goering and P. Poggi-Corradini, Modulus of families of walks on graphs, in Complex Analysis and Dynamical Systems VII, vol. 699 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 35–55. doi: 10.1090/conm/699/14080.

[5]

G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems (2006), 1695, URL http://igraph.sf.net.

[6]

S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 17 (2016), Paper No. 83, 5 pp.

[7]

J. DingJ. R. Lee and Y. Peres, Cover times, blanket times, and majorizing measures, Ann. of Math., 175 (2012), 1409-1471. doi: 10.4007/annals.2012.175.3.8.

[8]

P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, vol. 22 of Carus Mathematical Monographs, Mathematical Association of America, Washington, DC, 1984.

[9]

M. Goering, N. Albin, F. Sahneh, C. Scoglio and P. Poggi-Corradini, Numerical investigation of metrics for epidemic processes on graphs, in 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, 1317–1322. doi: 10.1109/ACSSC.2015.7421356.

[10]

E. Jones, T. Oliphant and P. Peterson et al., SciPy: Open source scientific tools for Python, 2001–, URL http://www.scipy.org/, [Online; accessed 2/28/2018].

[11]

D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009, With a chapter by James G. Propp and David B. Wilson.

[12]

D. A. Spielman, Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 45-61. doi: 10.1090/bull/1557.

Figure 1.  The path graph $P_3$ on three nodes
Figure 2.  Antisnowflaking exponent for different $p$ values
Figure 3.  The cycle graph $C_N$ and the extremal density $\rho^*$ for $\Gamma(a, c)$ and $\Gamma(a, b)$
Figure 4.  $K_6$- Complete graph on 6 nodes
Figure 5.  The complete graph $K_N$ and the extremal density $\rho^*$ for $\Gamma(a, b)$
Figure 6.  The square graph
Figure 7.  Eigenvalues of $M$ as $\beta$ varies, given $\alpha = 1$
Figure 8.  Comparisons of times required to compute $d_p$ distances on several square 2D grids for different values of $p$
[1]

Donato Patrizia, Andrey Piatnitski. On the effective interfacial resistance through rough surfaces. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1295-1310. doi: 10.3934/cpaa.2010.9.1295

[2]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[3]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[4]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[5]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[6]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[7]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[8]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[9]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[10]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[11]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[12]

Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems & Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609

[13]

Carlos A. Berenstein and Alain Yger. Residues and effective Nullstellensatz. Electronic Research Announcements, 1996, 2: 82-91.

[14]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[15]

Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919

[16]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[17]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[18]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[19]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[20]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]