• Previous Article
    On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain
June 2018, 23(4): 1395-1410. doi: 10.3934/dcdsb.2018156

Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model

1. 

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

2. 

College of Science & Three Gorges Mathematical Research Center, China Three Gorges University, Yichang 443002, China

3. 

School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

* Corresponding author

Received  August 2016 Revised  February 2018 Published  April 2018

Fund Project: Research Supported by the NNSF of China (Grant Nos. 11601164, 11271381 and 11701325), the National Basic Research Program of China (973 Program) (Grant No. 2010CB808002), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J05010 and 2017J05007) and the Scientific Research Funds of Huaqiao University (Grant No.15BS201)

This paper is dedicated to the study of the Cauchy problem for a compressible viscous liquid-gas two-phase flow model in $\mathbb{R}^N\,(N≥2)$. We concentrate on the critical Besov spaces based on the $L^p$ setting. We improve the range of Lebesgue exponent $p$, for which the system is locally well-posed, compared to [22]. Applying Lagrangian coordinates is the key to our statements, as it enables us to obtain the result by means of Banach fixed point theorem.

Citation: Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011.

[2]

Q. L. ChenC. X. Miao and Z. F. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474. doi: 10.1137/060660552.

[3]

Q. L. ChenC. X. Miao and Z. F. Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26 (2010), 915-946.

[4]

N. Chikami and R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435-3467. doi: 10.1016/j.jde.2015.01.012.

[5]

H. B. CuiW. J. WangL. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512. doi: 10.1137/15M1037792.

[6]

H. B. CuiH. Y. Wen and H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Methods Appl. Sci., 36 (2013), 567-583. doi: 10.1002/mma.2614.

[7]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[8]

R. Danchin, Lagrangian approach for the compressible Navier-Stokes equations, Ann. Inst. Fourier, 64 (2014), 753-791. doi: 10.5802/aif.2865.

[9]

R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480. doi: 10.1002/cpa.21409.

[10]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233. doi: 10.1081/PDE-100106132.

[11]

S. EvjeT. Flåtten and H. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[12]

S. Evje and K. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[13]

S. Evje and K. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[14]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[15]

P. B. Mucha, The cauchy problem for the compressible Navier-Stokes equations in the Lp-framework, Nonlinear Anal., 52 (2003), 1379-1392. doi: 10.1016/S0362-546X(02)00270-5.

[16]

J. Nash, Le probléme de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497.

[17]

A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009.

[18]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3, Walter de Gruyter, Berlin, 1996.

[19]

A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130 (1982), 197-213. doi: 10.1007/BF01761495.

[20]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103 (1986), 259-296. doi: 10.1007/BF01206939.

[21]

H. Y. WenL. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[22]

F. Y. Xu and J. Yuan, On the well-posedness for a multi-dimensional compressible viscous liquid-gas two-phase flow model in critical spaces, Z. Angew. Math. Phys., 66 (2015), 2395-2417. doi: 10.1007/s00033-015-0529-7.

[23]

L. YaoT. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[24]

L. YaoT. Zhang and C. J. Zhu, A blow-up criterion for a 2d viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

[25]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[26]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011.

[2]

Q. L. ChenC. X. Miao and Z. F. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474. doi: 10.1137/060660552.

[3]

Q. L. ChenC. X. Miao and Z. F. Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26 (2010), 915-946.

[4]

N. Chikami and R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435-3467. doi: 10.1016/j.jde.2015.01.012.

[5]

H. B. CuiW. J. WangL. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512. doi: 10.1137/15M1037792.

[6]

H. B. CuiH. Y. Wen and H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Methods Appl. Sci., 36 (2013), 567-583. doi: 10.1002/mma.2614.

[7]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614. doi: 10.1007/s002220000078.

[8]

R. Danchin, Lagrangian approach for the compressible Navier-Stokes equations, Ann. Inst. Fourier, 64 (2014), 753-791. doi: 10.5802/aif.2865.

[9]

R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480. doi: 10.1002/cpa.21409.

[10]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233. doi: 10.1081/PDE-100106132.

[11]

S. EvjeT. Flåtten and H. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[12]

S. Evje and K. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[13]

S. Evje and K. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[14]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[15]

P. B. Mucha, The cauchy problem for the compressible Navier-Stokes equations in the Lp-framework, Nonlinear Anal., 52 (2003), 1379-1392. doi: 10.1016/S0362-546X(02)00270-5.

[16]

J. Nash, Le probléme de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497.

[17]

A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009.

[18]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3, Walter de Gruyter, Berlin, 1996.

[19]

A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130 (1982), 197-213. doi: 10.1007/BF01761495.

[20]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103 (1986), 259-296. doi: 10.1007/BF01206939.

[21]

H. Y. WenL. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[22]

F. Y. Xu and J. Yuan, On the well-posedness for a multi-dimensional compressible viscous liquid-gas two-phase flow model in critical spaces, Z. Angew. Math. Phys., 66 (2015), 2395-2417. doi: 10.1007/s00033-015-0529-7.

[23]

L. YaoT. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[24]

L. YaoT. Zhang and C. J. Zhu, A blow-up criterion for a 2d viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

[25]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[26]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

[1]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[2]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[3]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[4]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[5]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[6]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[7]

Jan Prüss, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett. On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities. Evolution Equations & Control Theory, 2012, 1 (1) : 171-194. doi: 10.3934/eect.2012.1.171

[8]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[9]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[10]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[11]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[12]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[13]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[14]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[15]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[16]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[17]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[18]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[19]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[20]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

2016 Impact Factor: 0.994

Article outline

[Back to Top]