• Previous Article
    Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia
  • DCDS-B Home
  • This Issue
  • Next Article
    Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing
2018, 23(3): 1267-1295. doi: 10.3934/dcdsb.2018151

Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary

1. 

University of Nebraska-Lincoln, Lincoln, NE, USA

2. 

University of Nebraska-Lincoln, Lincoln, NE, USA, & Hacettepe University, Ankara, Turkey

3. 

University of Maryland, Baltimore County, Baltimore, MD, USA

* Corresponding author:Justin T. Webster

In memory of Igor D. Chueshov

Received  April 2017 Revised  September 2017 Published  January 2018

Fund Project: The research of G. Avalos was partially supported by the NSF Grants DMS-1211232 and DMS-1616425. The research of J.T. Webster was partially supported by the NSF Grant DMS-1504697

We address semigroup well-posedness of the fluid-structure interaction of a linearized compressible, viscous fluid and an elastic plate (in the absence of rotational inertia). Unlike existing work in the literature, we linearize the compressible Navier-Stokes equations about an arbitrary state (assuming the fluid is barotropic), and so the fluid PDE component of the interaction will generally include a nontrivial ambient flow profile $\mathbf{U}$. The appearance of this term introduces new challenges at the level of the stationary problem. In addition, the boundary of the fluid domain is unavoidably Lipschitz, and so the well-posedness argument takes into account the technical issues associated with obtaining necessary boundary trace and elliptic regularity estimates. Much of the previous work on flow-plate models was done via Galerkin-type constructions after obtaining good a priori estimates on solutions (specifically [18]-the work most pertinent to ours here); in contrast, we adopt here a Lumer-Phillips approach, with a view of associating solutions of the fluid-structure dynamics with a $C_{0}$-semigroup ${{\left\{ {{e}^{\mathcal{A}t}} \right\}}_{t\ge 0}}$ on the natural finite energy space of initial data. So, given this approach, the major challenge in our work becomes establishing the maximality of the operator $\mathcal{A}$ that models the fluid-structure dynamics. In sum: our main result is semigroup well-posedness for the fully coupled fluid-structure dynamics, under the assumption that the ambient flow field $ \mathbf{U}∈ \mathbf{H}^{3}(\mathcal{O})$ has zero normal component trace on the boundary (a standard assumption with respect to the literature). In the final sections we address well-posedness of the system in the presence of the von Karman plate nonlinearity, as well as the stationary problem associated to the dynamics.

Citation: George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151
References:
[1]

R. Aoyama and Y. Kagei, Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain, Advances in Differential Equations, 21 (2016), 265-300.

[2]

J. P. Aubin, Applied Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction. In New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer International Publishing, (2014), 49-78.

[4]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037.

[5]

G. Avalos and T. Clark, A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction, Evolution Equations and Control Theory, 3 (2014), 557-578. doi: 10.3934/eect.2014.3.557.

[6]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence free finite element method, Applicationes Mathematicae, 35 (2008), 259-280. doi: 10.4064/am35-3-2.

[7]

G. Avalos and P. G. Geredeli, Exponential stability and supporting spectral analysis of a linearized compressible flow-structure PDE model, preprint, 2018.

[8]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction, Part Ⅰ: Explicit semigroup generator and its spectral properties, Contemporary Mathematics, 440 (2007), 15-54.

[9]

G. Avalos and R. Triggiani, Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE of fluid-structure interactions, Discrete and Continuous Dynamical Systems, 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.

[10]

R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity, John Wiley and Sons, Inc., New York-London, 1962.

[11]

V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Macmillan, 1963.

[12]

A. Buffa and G. Geymonat, On traces of functions in $ W^{2, p}(Ω)$ for Lipschitz domains in R3, Comptes Rendus de l'Acad émie des Sciences-Series I-Mathematics, 332 (2001), 699-704. doi: 10.1016/S0764-4442(01)01881-X.

[13]

A. BuffaM. Costabel and D. Sheen, On traces for $ \mathbf{H}(\text{curl}, Ω)$ in Lipschitz domains, Journal of Mathematical Analysis and Applications, 276 (2002), 845-867. doi: 10.1016/S0022-247X(02)00455-9.

[14]

G. Chen, Energy decay estimates and exact boundary-value controllability for the wave-equation in a bounded domain, Journal de Mathématiques Pures et Appliquées, 58 (1979), 249-273.

[15]

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Texts in Applied Mathematics, 4. Springer-Verlag, New York, 1990.

[16]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, (in Russian); English translation: 2002, Acta, Kharkov.

[17]

I. Chueshov, Personal communication, 2013.

[18]

I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid, Nonlinear Analysis: Theory, Methods & Applications, 95 (2014), 650-665. doi: 10.1016/j.na.2013.10.018.

[19]

I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressible fluid, Communications on Pure & Applied Analysis, 13 (2014), 1459-1778. doi: 10.3934/cpaa.2014.13.1759.

[20]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, New York: Springer, 2015.

[21]

I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evolution Equations & Control Theory, 5 (2016), 605-629. doi: 10.3934/eect.2016021.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010.

[23]

I. ChueshovI. Lasiecka and J. T. Webster, Evolution semigroups in supersonic flow-plate interactions, Journal of Differential Equations, 254 (2013), 1741-1773. doi: 10.1016/j.jde.2012.11.009.

[24]

I. ChueshovI. Lasiecka and J. T. Webster, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Communications in Partial Differential Equations, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[25]

I. ChueshovI. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior, Discrete & Continuous Dynamical Systems-Series S, 7 (2014), 925-965. doi: 10.3934/dcdss.2014.7.925.

[26]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, Journal of Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[27]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a poiseuille-type flow, Ukrainian Mathematical Journal, 65 (2013), 158-177. doi: 10.1007/s11253-013-0771-0.

[28]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Communications on Pure & Applied Analysis, 12 (2013), 1635-1656.

[29]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models, In IFIP Conference on System Modeling and Optimization, Springer Berlin Heidelberg, 391 (2013), 328-337.

[30]

H. B. da Veiga, Stationary motions and incompressible limit for compressible viscous fluids, Houston Journal of Mathematics, 13 (1987), 527-544.

[31]

E. Dowell, A Modern Course in Aeroelasticity, Kluwer Academic Publishers, 2004.

[32]

P. G. Geredeli and J. T. Webster, Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping, Nonlinear Analysis: Real World Applications, 31 (2016), 227-256. doi: 10.1016/j.nonrwa.2016.02.002.

[33]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.

[34]

T. Kato, Perturbation Theory for Linear Operators, Band 132 Springer-Verlag New York, Inc., New York, 1966.

[35]

S. Kesavan, Topics in Functional Analysis and Applications, 1989.

[36]

I. Lasiecka and J. T. Webster, Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow, SIAM Journal on Mathematical Analysis, 48 (2016), 1848-1891. doi: 10.1137/15M1040529.

[37]

P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Communications on Pure and Applied Mathematics, 13 (1960), 427-455. doi: 10.1002/cpa.3160130307.

[38]

W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge university press, 2000.

[39]

C. S. Morawetz, Energy identities for the wave equation, NYU Courant Institute, Math. Sci. Res. Rep. No., 1966.

[40]

J. Nečas, Direct Methods in the Theory of Elliptic Equations (translated by Gerard Tronel and Alois Kufner), Springer, New York, 2012.

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.

[42]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, Journal of Mathematical Analysis and applications, 137 (1989), 438-461. doi: 10.1016/0022-247X(89)90255-2.

[43]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Annales de l'IHP Analyse non linéaire, 4 (1987), 99-113. doi: 10.1016/S0294-1449(16)30374-2.

[44]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: Semigroup approach, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3123-3136. doi: 10.1016/j.na.2011.01.028.

show all references

References:
[1]

R. Aoyama and Y. Kagei, Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain, Advances in Differential Equations, 21 (2016), 265-300.

[2]

J. P. Aubin, Applied Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction. In New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer International Publishing, (2014), 49-78.

[4]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037.

[5]

G. Avalos and T. Clark, A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction, Evolution Equations and Control Theory, 3 (2014), 557-578. doi: 10.3934/eect.2014.3.557.

[6]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence free finite element method, Applicationes Mathematicae, 35 (2008), 259-280. doi: 10.4064/am35-3-2.

[7]

G. Avalos and P. G. Geredeli, Exponential stability and supporting spectral analysis of a linearized compressible flow-structure PDE model, preprint, 2018.

[8]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction, Part Ⅰ: Explicit semigroup generator and its spectral properties, Contemporary Mathematics, 440 (2007), 15-54.

[9]

G. Avalos and R. Triggiani, Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE of fluid-structure interactions, Discrete and Continuous Dynamical Systems, 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.

[10]

R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity, John Wiley and Sons, Inc., New York-London, 1962.

[11]

V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Macmillan, 1963.

[12]

A. Buffa and G. Geymonat, On traces of functions in $ W^{2, p}(Ω)$ for Lipschitz domains in R3, Comptes Rendus de l'Acad émie des Sciences-Series I-Mathematics, 332 (2001), 699-704. doi: 10.1016/S0764-4442(01)01881-X.

[13]

A. BuffaM. Costabel and D. Sheen, On traces for $ \mathbf{H}(\text{curl}, Ω)$ in Lipschitz domains, Journal of Mathematical Analysis and Applications, 276 (2002), 845-867. doi: 10.1016/S0022-247X(02)00455-9.

[14]

G. Chen, Energy decay estimates and exact boundary-value controllability for the wave-equation in a bounded domain, Journal de Mathématiques Pures et Appliquées, 58 (1979), 249-273.

[15]

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Texts in Applied Mathematics, 4. Springer-Verlag, New York, 1990.

[16]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, (in Russian); English translation: 2002, Acta, Kharkov.

[17]

I. Chueshov, Personal communication, 2013.

[18]

I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid, Nonlinear Analysis: Theory, Methods & Applications, 95 (2014), 650-665. doi: 10.1016/j.na.2013.10.018.

[19]

I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressible fluid, Communications on Pure & Applied Analysis, 13 (2014), 1459-1778. doi: 10.3934/cpaa.2014.13.1759.

[20]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, New York: Springer, 2015.

[21]

I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evolution Equations & Control Theory, 5 (2016), 605-629. doi: 10.3934/eect.2016021.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010.

[23]

I. ChueshovI. Lasiecka and J. T. Webster, Evolution semigroups in supersonic flow-plate interactions, Journal of Differential Equations, 254 (2013), 1741-1773. doi: 10.1016/j.jde.2012.11.009.

[24]

I. ChueshovI. Lasiecka and J. T. Webster, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Communications in Partial Differential Equations, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[25]

I. ChueshovI. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior, Discrete & Continuous Dynamical Systems-Series S, 7 (2014), 925-965. doi: 10.3934/dcdss.2014.7.925.

[26]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, Journal of Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[27]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a poiseuille-type flow, Ukrainian Mathematical Journal, 65 (2013), 158-177. doi: 10.1007/s11253-013-0771-0.

[28]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Communications on Pure & Applied Analysis, 12 (2013), 1635-1656.

[29]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models, In IFIP Conference on System Modeling and Optimization, Springer Berlin Heidelberg, 391 (2013), 328-337.

[30]

H. B. da Veiga, Stationary motions and incompressible limit for compressible viscous fluids, Houston Journal of Mathematics, 13 (1987), 527-544.

[31]

E. Dowell, A Modern Course in Aeroelasticity, Kluwer Academic Publishers, 2004.

[32]

P. G. Geredeli and J. T. Webster, Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping, Nonlinear Analysis: Real World Applications, 31 (2016), 227-256. doi: 10.1016/j.nonrwa.2016.02.002.

[33]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.

[34]

T. Kato, Perturbation Theory for Linear Operators, Band 132 Springer-Verlag New York, Inc., New York, 1966.

[35]

S. Kesavan, Topics in Functional Analysis and Applications, 1989.

[36]

I. Lasiecka and J. T. Webster, Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow, SIAM Journal on Mathematical Analysis, 48 (2016), 1848-1891. doi: 10.1137/15M1040529.

[37]

P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Communications on Pure and Applied Mathematics, 13 (1960), 427-455. doi: 10.1002/cpa.3160130307.

[38]

W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge university press, 2000.

[39]

C. S. Morawetz, Energy identities for the wave equation, NYU Courant Institute, Math. Sci. Res. Rep. No., 1966.

[40]

J. Nečas, Direct Methods in the Theory of Elliptic Equations (translated by Gerard Tronel and Alois Kufner), Springer, New York, 2012.

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.

[42]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, Journal of Mathematical Analysis and applications, 137 (1989), 438-461. doi: 10.1016/0022-247X(89)90255-2.

[43]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Annales de l'IHP Analyse non linéaire, 4 (1987), 99-113. doi: 10.1016/S0294-1449(16)30374-2.

[44]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: Semigroup approach, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3123-3136. doi: 10.1016/j.na.2011.01.028.

Figure 1.  The Fluid-Structure Geometry
[1]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[2]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[3]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[4]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[5]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[6]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[7]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[8]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[9]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[10]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[11]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[12]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[13]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[14]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[15]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[16]

Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036

[17]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[18]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[19]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[20]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]