2018, 23(3): 1243-1265. doi: 10.3934/dcdsb.2018150

Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia

1. 

V.N.Karazin Karkiv national university, Svobody sq. 4, Kharkiv, 61077, Ukraine

* Corresponding author: Iryna Ryzhkova-Gerasymova

Received  March 2017 Revised  July 2017 Published  January 2018

We study well-posedness and asymptotic dynamics of a coupled system consisting of linearized 3D Navier-Stokes equations in a bounded domain and a classical (nonlinear) full von Karman plate equations that accounts for both transversal and lateral displacements on a flexible part of the boundary. Rotational inertia of the filaments of the plate is not taken into account. Our main result shows well-posedness of strong solutions to the problem, thus the problem generates a semiflow in an appropriate phase space. We also prove uniform stability of strong solutions to homogeneous problem.

Citation: Iryna Ryzhkova-Gerasymova. Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1243-1265. doi: 10.3934/dcdsb.2018150
References:
[1]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037.

[2]

G. Avalos and T. Clark, A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction, Evolution Equations and Control Theory, 3 (2014), 557-578. doi: 10.3934/eect.2014.3.557.

[3]

A. ChambolleB. DesjardinsM. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[4]

I. D. Chueshov, Strong slutions and attractor of the von Karman equations (in Russian), Mathematics of the USSR-Sbornik, 69 (1990), 25-36.

[5]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011), 1801-1812.

[6]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183 pp.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010.

[8]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Comm. Pure Appl. Anal., 12 (2013), 1635-1656.

[9]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic plate modeled by full von Karman equations, J. Diff. Eqs, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[10]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer Berlin, New York, 1976.

[11]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid, J. Math. Fluid Mech., 10 (2008), 388-401. doi: 10.1007/s00021-006-0236-4.

[12]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model, Appl. Anal., 88 (2009), 1053-1065. doi: 10.1080/00036810903114841.

[13]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model, Math. Methods Appl. Sci., 32 (2009), 1452-1466. doi: 10.1002/mma.1104.

[14]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Prog. Nonlinear Differ. Equ. Appl. , Basel: Birkhäuser, 50 (2002), 197-216.

[15]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422. doi: 10.1137/S0363012996301907.

[16]

J. -L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications, Vol. 1, Dunod, Paris, 1968.

[17]

V. I. Sedenko, Global in Time Well-posedness of Initial-boundary Value Problems for Marguerre-Vlasov Equations of Nonlinear Elastic Shells Theory, (in russian) Docthral Thesis, Rostov state university, 1995.

[18]

V. I. Sedenko, The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells, (in russian) Izvestiya: Mathematics, 60 (1996), 1027-1059.

[19]

J. Simon, Compact sets in the space Lp(0, T; B), Annali di Matematica Pura ed Applicata, Ser.4, 146 (1987), 65-96.

[20]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[21]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North Holland, Amsterdam, 1978.

show all references

References:
[1]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037.

[2]

G. Avalos and T. Clark, A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction, Evolution Equations and Control Theory, 3 (2014), 557-578. doi: 10.3934/eect.2014.3.557.

[3]

A. ChambolleB. DesjardinsM. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[4]

I. D. Chueshov, Strong slutions and attractor of the von Karman equations (in Russian), Mathematics of the USSR-Sbornik, 69 (1990), 25-36.

[5]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011), 1801-1812.

[6]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183 pp.

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010.

[8]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Comm. Pure Appl. Anal., 12 (2013), 1635-1656.

[9]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic plate modeled by full von Karman equations, J. Diff. Eqs, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[10]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer Berlin, New York, 1976.

[11]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid, J. Math. Fluid Mech., 10 (2008), 388-401. doi: 10.1007/s00021-006-0236-4.

[12]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model, Appl. Anal., 88 (2009), 1053-1065. doi: 10.1080/00036810903114841.

[13]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model, Math. Methods Appl. Sci., 32 (2009), 1452-1466. doi: 10.1002/mma.1104.

[14]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Prog. Nonlinear Differ. Equ. Appl. , Basel: Birkhäuser, 50 (2002), 197-216.

[15]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422. doi: 10.1137/S0363012996301907.

[16]

J. -L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications, Vol. 1, Dunod, Paris, 1968.

[17]

V. I. Sedenko, Global in Time Well-posedness of Initial-boundary Value Problems for Marguerre-Vlasov Equations of Nonlinear Elastic Shells Theory, (in russian) Docthral Thesis, Rostov state university, 1995.

[18]

V. I. Sedenko, The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells, (in russian) Izvestiya: Mathematics, 60 (1996), 1027-1059.

[19]

J. Simon, Compact sets in the space Lp(0, T; B), Annali di Matematica Pura ed Applicata, Ser.4, 146 (1987), 65-96.

[20]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[21]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North Holland, Amsterdam, 1978.

[1]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[2]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[3]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[4]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[5]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[6]

Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483

[7]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[8]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[9]

Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543

[10]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[11]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[12]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[13]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[14]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[15]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[16]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017149

[17]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[18]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[19]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[20]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (23)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]