May 2018, 23(3): 1199-1217. doi: 10.3934/dcdsb.2018148

Random Delta-Hausdorff-attractors

1. 

Technische Universität Berlin, Fak. Ⅱ, Institut für Mathematik, Sekr. MA 7-5, Straße des 17. Juni 136,10623 Berlin, Germany

Received  March 2017 Revised  August 2017 Published  February 2018

Fund Project: The second author is supported by the DFG-SPP 1590

Global random attractors and random point attractors for random dynamical systems have been studied for several decades. Here we introduce two intermediate concepts: Δ-Hausdorff-attractors are characterized by attracting all deterministic compact sets of Hausdorff dimension at most Δ, where Δ is a non-negative number, while cc-attractors attract all countable compact sets. We provide two examples showing that a given random dynamical system may have various different Δ-Hausdorff-attractors for different values of Δ. It seems that both concepts are new even in the context of deterministic dynamical systems.

Citation: Michael Scheutzow, Maite Wilke-Berenguer. Random Delta-Hausdorff-attractors. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1199-1217. doi: 10.3934/dcdsb.2018148
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.

[2]

S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61. doi: 10.1214/aoms/1177731642.

[3]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. doi: 10.1080/1468936042000207792.

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[5]

H. Crauel, Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427. doi: 10.1017/S0024610700001915.

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002.

[7]

H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692.

[8]

R. R. DavronovU. U. Jamilov and M. Ladra, Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170. doi: 10.1080/10236198.2015.1062481.

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986.

[10]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556. doi: 10.1007/s00440-016-0716-2.

[11]

R. N. Ganikhodzhaev, Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.

[12]

N. N. Ganikhodzaev, The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.

[13]

U. U. JamilovM. Scheutzow and M. Wilke-Berenguer, On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243. doi: 10.1017/etds.2015.30.

[14]

B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017. doi: 10.1088/1742-6596/697/1/012017.

[15]

P. Mandl, Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.

[16]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.

[17]

G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999.

[18]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.

[19]

M. Wilke Berenguer, A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.

[2]

S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61. doi: 10.1214/aoms/1177731642.

[3]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. doi: 10.1080/1468936042000207792.

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[5]

H. Crauel, Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427. doi: 10.1017/S0024610700001915.

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002.

[7]

H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692.

[8]

R. R. DavronovU. U. Jamilov and M. Ladra, Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170. doi: 10.1080/10236198.2015.1062481.

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986.

[10]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556. doi: 10.1007/s00440-016-0716-2.

[11]

R. N. Ganikhodzhaev, Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.

[12]

N. N. Ganikhodzaev, The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.

[13]

U. U. JamilovM. Scheutzow and M. Wilke-Berenguer, On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243. doi: 10.1017/etds.2015.30.

[14]

B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017. doi: 10.1088/1742-6596/697/1/012017.

[15]

P. Mandl, Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.

[16]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.

[17]

G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999.

[18]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.

[19]

M. Wilke Berenguer, A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016.

[1]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[2]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[3]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[4]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[5]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[6]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[7]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[8]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[9]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[10]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[11]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[12]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[13]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[14]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[15]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[16]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[17]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[18]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

[19]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[20]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (28)
  • HTML views (240)
  • Cited by (0)

Other articles
by authors

[Back to Top]