2018, 23(3): 1133-1154. doi: 10.3934/dcdsb.2018145

Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms

1. 

Baku branch of M.V. Lomonosov Moscow State University, Universitetskaya st., 1, Xocasan, Binagadi district, Baku, AZ 1144, Azerbaijan

2. 

M.V. Lomonosov Moscow State University, Moscow, 119991, Russian Federation

3. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127051, Russian Federation

4. 

Voronezh State University, Universitetskaya sq. 1, Voronezh 394018, Russian Federation

5. 

Laboratory of Fluid Dynamics and Seismic (RAEP 5top100), Moscow Institute of Physics and Technology, Institutskiy 9, Dolgoprudny, Moscow Region 141700, Russian Federation

* Corresponding author: G. A. Chechkin

To the blessed memory of I. D. Chueshov

Received  March 2017 Revised  September 2017 Published  January 2018

Fund Project: Work of GAC was supported in part by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP05131707) and by the Russian Foundation for Basic Research (projects 18-01-00046). This research of VVC was supported by the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0037). The work of LSP was partially supported by Russian Science Foundation (grant no. 18-11-00148).

We consider complex Ginzburg-Landau (GL) type equations of the form:
${\partial _t}u = (1 + \alpha i)\Delta u + R{\mkern 1mu} u + (1 + \beta i)|u{|^2}u + g,$
where
$R$
,
$β$
, and
$g$
are random rapidly oscillating real functions. Assuming that the random functions are ergodic and statistically homogeneous in space variables, we prove that the trajectory attractors of these systems tend to the trajectory attractors of the homogenized equations whose terms are the average of the corresponding terms of the initial systems.
Bibliography: 52 titles.
Citation: Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145
References:
[1]

Y. AmiratO. BodartG. A. Chechkin and A. L. Piatnitski, Boundary homogenization in domains with randomly oscillating boundary, Stochastic Processes and their Applications, 121 (2011), 1-23.

[2]

V. I. Arnol'd and A. Avez, Ergodic Problems of Classical Mechanics, W. A. Benjamin Inc., New York – Amsterdam, 1968.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.

[4]

N. S. Bakhvalov and G. P. Panasenko, Averaging Processes in Periodic Media, Mathematics and its Applications (Soviet Series), 36. Kluwer Academic Publishers Group, Dordrecht, 1989.

[5]

K. A. BekmaganbetovG. A. ChechkinV. V. Chepyzhov and A. Yu. Goritsky, Homogenization of Trajectory Attractors of 3D Navier-Stokes system with Randomly Oscillating Force, Discrete and Continuous Dynamical Systems. Series A (DCDS-A), 37 (2017), 2375-2393.

[6]

K. A. BekmaganbetovG. A. Chechkin and V. V. Chepyzhov, Homogenization of Random Attractors for Reaction-Diffusion Systems, C R Mécanique, 344 (2016), 753-758. doi: 10.1016/j.crme.2016.10.015.

[7]

A. Bensoussan, J. -L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures, Corrected reprint of the 1978 original [MR0503330]. AMS Chelsea Publishing, Providence, RI, 2011.

[8]

G. D. Birkhoff, Proof of the ergodic theorem, Proc Natl Acad Sci USA, 17 (1931), 656-660.

[9]

N. N. Bogolyubov and Ya. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, Gordon & Breach Science Publishers, New York, 1961.

[10]

A. BourgeatI. D. Chueshov and L. Pankratov, Homogenization of attractors for semilinear parabolic equations in domains with spherical traps, Comptes rendues de l'Académie des Sciences, série I, 329 (1999), 581-586.

[11]

A. Bourgeat and L. Pankratov, Homogenization of reaction-diffusion equations in domains with "traps". In : Proceedings of the International Conference "Porous Media: Physics, Modelling, Simulation", Ed. A. Dmitrievsky, M. Panfilov, World Scientific, Singapore-New Jersey-London-Hong Kong, 2000,267–278.

[12]

L. Boutet de MonvelI.D. Chueshov and E. Ya. Khruslov, Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure, Ann. Mat. Pura Appl., 172 (1997), 297-322.

[13]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013.

[14]

G. A. Chechkin, A. L. Piatnitski and A. S. Shamaev, Homogenization. Methods and Applications, Translated from the 2007 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, 234. American Mathematical Society, Providence, RI, 2007.

[15]

G. A. ChechkinT. P. ChechkinaC. D'Apice and U. De Maio, Homogenization in Domains Randomly Perforated Along the Boundary, Discrete Continuous Dynam. Systems -B, 12 (2009), 713-730.

[16]

G. A. ChechkinT. P. ChechkinaC. D'ApiceU. De Maio and T. A. Mel'nyk, Asymptotic Analysis of a Boundary Value Problem in a Cascade Thick Junction with a Random Transmission Zone, Applicable Analysis, 88 (2009), 1543-1562.

[17]

G. A. ChechkinT. P. ChechkinaC. D'ApiceU. De Maio and T. A. Mel'nyk, Homogenization of 3D Thick Cascade Junction with the Random Transmission Zone Periodic in One direction, Russ. J. Math. Phys., 17 (2010), 35-55.

[18]

G. A. ChechkinC. D'ApiceU. De Maio and A. L. Piatnitski, On the Rate of Convergence of Solutions in Domain with Random Multilevel Oscillating Boundary, Asymptotic Analysis, 87 (2014), 1-28.

[19]

G. A. ChechkinT. P. ChechkinaT. S. Ratiu and M. S. Romanov, Nematodynamics and Random Homogenization, Applicable Analysis, 95 (2016), 2243-2253. doi: 10.1080/00036811.2015.1036241.

[20]

V. V. ChepyzhovA. Yu. Goritski and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russ. J. Math. Phys., 12 (2005), 17-39.

[21]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl., 90 (2008), 469--491.

[22]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. J.Julius Schauder Center, 7 (1996), 49-76.

[23]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.

[24]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[25]

V. V. Chepyzhov and M. I. Vishik, Global attractors for non-autonomous Ginzburg-Landau equation with singularly oscillating terms, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 123-148.

[26]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Kharkov, AKTA, 1999.

[27]

I. D. Chueshov and L. S. Pankratov, Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients, Mat. Fiz., Analiz, Geom., 6 (1999), 158-181.

[28]

I. D. Chueshov and L. S. Pankratov, Averaging of attractors of nonlinear hyperbolic equations with asymptotically degenerate coefficients, Sb. Math., 190 (1999), 1325-1352.

[29]

I. D. Chueshov and B. Schmalfuß, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.

[30]

Yu. A. Dubinski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \imath } }}$, Weak convergence in nonlinear elliptic and parabolic equations, Sb. Math., 67(109) (1965), 609-642.

[31]

N. Dunford and J. T. Schwartz, Linear Operators. Part Ⅰ: General Theory, John Wiley & Sons, Inc., New–York, 1988.

[32]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.

[33]

B. Fiedler and M. I. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Asymptotic Anal., 34 (2003), 159-185.

[34]

J. M. Ghidaglia and B. Héron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica D, 28 (1987), 282-304.

[35]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.

[36]

J. K. Hale and S. M. Verduyn Lunel, Averaging in infinite dimensions, J. Int. Eq. Appl., 2 (1990), 463-494.

[37]

A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides, Sb. Math., 187 (1996), 635-677.

[38]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer–Verlag, Berlin, 1994.

[39]

E. Ya. Khruslov and L. S. Pankratov, Homogenization of boundary problems for GinzburgLandau equation in weakly connected domains, In: Spectral Operator Theory and Related Topics, edited by V. A. Marchenko, AMS Providence, 19 (1994), 233–268.

[40]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[41]

J. -L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes at Applications, volume 1, Dunod, Gauthier-Villars, Paris, 1968.

[42]

V. A. Marchenko and E. Ya. Khruslov, Homogenization of Partial Differential Equations, Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006.

[43]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.

[44]

L. Pankratov, Homogenization of Ginzburg-Landau heat flow equation in a porous medium, Applicable Analysis, 69 (1998), 31-45.

[45]

E. Sánchez-Palencia, Homogenization Techniques for Composite Media, Lecture Notes in Physics, 272. Springer-Verlag, Berlin, 1987.

[46]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.

[47]

M. I. Vishik and V. V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192 (2001), 11-47.

[48]

M. I. Vishik and V. V. Chepyzhov, The nonautonomous Ginzburg-Landau equation and its attractors, Sb. Math., 196 (2005), 791-815.

[49]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Russian Math. Surveys, 66 (2011), 637-731.

[50]

M. I. Vishik and B. Fiedler, Quantitative averaging of global attractors of hyperbolic wave equations with rapidly oscillating coefficients, Russian Math. Surveys, 57 (2002), 709-728.

[51]

S. V. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it's dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 24 (2000), 1-25.

[52]

V. V. Zhikov, On two-scale convergence, Journal of Mathematical Sciences, 120 (2003), 1328-1352.

show all references

References:
[1]

Y. AmiratO. BodartG. A. Chechkin and A. L. Piatnitski, Boundary homogenization in domains with randomly oscillating boundary, Stochastic Processes and their Applications, 121 (2011), 1-23.

[2]

V. I. Arnol'd and A. Avez, Ergodic Problems of Classical Mechanics, W. A. Benjamin Inc., New York – Amsterdam, 1968.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.

[4]

N. S. Bakhvalov and G. P. Panasenko, Averaging Processes in Periodic Media, Mathematics and its Applications (Soviet Series), 36. Kluwer Academic Publishers Group, Dordrecht, 1989.

[5]

K. A. BekmaganbetovG. A. ChechkinV. V. Chepyzhov and A. Yu. Goritsky, Homogenization of Trajectory Attractors of 3D Navier-Stokes system with Randomly Oscillating Force, Discrete and Continuous Dynamical Systems. Series A (DCDS-A), 37 (2017), 2375-2393.

[6]

K. A. BekmaganbetovG. A. Chechkin and V. V. Chepyzhov, Homogenization of Random Attractors for Reaction-Diffusion Systems, C R Mécanique, 344 (2016), 753-758. doi: 10.1016/j.crme.2016.10.015.

[7]

A. Bensoussan, J. -L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures, Corrected reprint of the 1978 original [MR0503330]. AMS Chelsea Publishing, Providence, RI, 2011.

[8]

G. D. Birkhoff, Proof of the ergodic theorem, Proc Natl Acad Sci USA, 17 (1931), 656-660.

[9]

N. N. Bogolyubov and Ya. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, Gordon & Breach Science Publishers, New York, 1961.

[10]

A. BourgeatI. D. Chueshov and L. Pankratov, Homogenization of attractors for semilinear parabolic equations in domains with spherical traps, Comptes rendues de l'Académie des Sciences, série I, 329 (1999), 581-586.

[11]

A. Bourgeat and L. Pankratov, Homogenization of reaction-diffusion equations in domains with "traps". In : Proceedings of the International Conference "Porous Media: Physics, Modelling, Simulation", Ed. A. Dmitrievsky, M. Panfilov, World Scientific, Singapore-New Jersey-London-Hong Kong, 2000,267–278.

[12]

L. Boutet de MonvelI.D. Chueshov and E. Ya. Khruslov, Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure, Ann. Mat. Pura Appl., 172 (1997), 297-322.

[13]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013.

[14]

G. A. Chechkin, A. L. Piatnitski and A. S. Shamaev, Homogenization. Methods and Applications, Translated from the 2007 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, 234. American Mathematical Society, Providence, RI, 2007.

[15]

G. A. ChechkinT. P. ChechkinaC. D'Apice and U. De Maio, Homogenization in Domains Randomly Perforated Along the Boundary, Discrete Continuous Dynam. Systems -B, 12 (2009), 713-730.

[16]

G. A. ChechkinT. P. ChechkinaC. D'ApiceU. De Maio and T. A. Mel'nyk, Asymptotic Analysis of a Boundary Value Problem in a Cascade Thick Junction with a Random Transmission Zone, Applicable Analysis, 88 (2009), 1543-1562.

[17]

G. A. ChechkinT. P. ChechkinaC. D'ApiceU. De Maio and T. A. Mel'nyk, Homogenization of 3D Thick Cascade Junction with the Random Transmission Zone Periodic in One direction, Russ. J. Math. Phys., 17 (2010), 35-55.

[18]

G. A. ChechkinC. D'ApiceU. De Maio and A. L. Piatnitski, On the Rate of Convergence of Solutions in Domain with Random Multilevel Oscillating Boundary, Asymptotic Analysis, 87 (2014), 1-28.

[19]

G. A. ChechkinT. P. ChechkinaT. S. Ratiu and M. S. Romanov, Nematodynamics and Random Homogenization, Applicable Analysis, 95 (2016), 2243-2253. doi: 10.1080/00036811.2015.1036241.

[20]

V. V. ChepyzhovA. Yu. Goritski and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russ. J. Math. Phys., 12 (2005), 17-39.

[21]

V. V. ChepyzhovV. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl., 90 (2008), 469--491.

[22]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. J.Julius Schauder Center, 7 (1996), 49-76.

[23]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.

[24]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[25]

V. V. Chepyzhov and M. I. Vishik, Global attractors for non-autonomous Ginzburg-Landau equation with singularly oscillating terms, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 123-148.

[26]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Kharkov, AKTA, 1999.

[27]

I. D. Chueshov and L. S. Pankratov, Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients, Mat. Fiz., Analiz, Geom., 6 (1999), 158-181.

[28]

I. D. Chueshov and L. S. Pankratov, Averaging of attractors of nonlinear hyperbolic equations with asymptotically degenerate coefficients, Sb. Math., 190 (1999), 1325-1352.

[29]

I. D. Chueshov and B. Schmalfuß, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.

[30]

Yu. A. Dubinski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \imath } }}$, Weak convergence in nonlinear elliptic and parabolic equations, Sb. Math., 67(109) (1965), 609-642.

[31]

N. Dunford and J. T. Schwartz, Linear Operators. Part Ⅰ: General Theory, John Wiley & Sons, Inc., New–York, 1988.

[32]

M. Efendiev and S. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 961-989.

[33]

B. Fiedler and M. I. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Asymptotic Anal., 34 (2003), 159-185.

[34]

J. M. Ghidaglia and B. Héron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica D, 28 (1987), 282-304.

[35]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.

[36]

J. K. Hale and S. M. Verduyn Lunel, Averaging in infinite dimensions, J. Int. Eq. Appl., 2 (1990), 463-494.

[37]

A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides, Sb. Math., 187 (1996), 635-677.

[38]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer–Verlag, Berlin, 1994.

[39]

E. Ya. Khruslov and L. S. Pankratov, Homogenization of boundary problems for GinzburgLandau equation in weakly connected domains, In: Spectral Operator Theory and Related Topics, edited by V. A. Marchenko, AMS Providence, 19 (1994), 233–268.

[40]

J. -L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[41]

J. -L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes at Applications, volume 1, Dunod, Gauthier-Villars, Paris, 1968.

[42]

V. A. Marchenko and E. Ya. Khruslov, Homogenization of Partial Differential Equations, Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006.

[43]

A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.

[44]

L. Pankratov, Homogenization of Ginzburg-Landau heat flow equation in a porous medium, Applicable Analysis, 69 (1998), 31-45.

[45]

E. Sánchez-Palencia, Homogenization Techniques for Composite Media, Lecture Notes in Physics, 272. Springer-Verlag, Berlin, 1987.

[46]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.

[47]

M. I. Vishik and V. V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192 (2001), 11-47.

[48]

M. I. Vishik and V. V. Chepyzhov, The nonautonomous Ginzburg-Landau equation and its attractors, Sb. Math., 196 (2005), 791-815.

[49]

M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Russian Math. Surveys, 66 (2011), 637-731.

[50]

M. I. Vishik and B. Fiedler, Quantitative averaging of global attractors of hyperbolic wave equations with rapidly oscillating coefficients, Russian Math. Surveys, 57 (2002), 709-728.

[51]

S. V. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it's dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 24 (2000), 1-25.

[52]

V. V. Zhikov, On two-scale convergence, Journal of Mathematical Sciences, 120 (2003), 1328-1352.

Figure 1.  Attractors of the Ginzburg–Landau Equations
[1]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[2]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[3]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[4]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[5]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[6]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[7]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[8]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[9]

Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247

[10]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[11]

Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029

[12]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[13]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[14]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[15]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[16]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[17]

Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks & Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115

[18]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[19]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[20]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (25)
  • HTML views (144)
  • Cited by (0)

[Back to Top]