May 2018, 23(3): 1037-1072. doi: 10.3934/dcdsb.2018141

Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions

1. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA and IBS-Polish Academy of Sciences, Warsaw, Poland

2. 

Institute of Mathematical and Computer Sciences, University of São Paulo, 13566-590 São Carlos, SP, Brazil

* Corresponding author: Irena Lasiecka

Received  January 2017 Revised  June 2017 Published  February 2018

This paper is concerned with long-time dynamics of a full von Karman system subject to nonlinear thermal coupling and free boundary conditions. In contrast with scalar von Karman system, vectorial full von Karman system accounts for both vertical and in plane displacements. The corresponding PDE is of critical interest in flow structure interactions where nonlinear plate/shell dynamics interacts with perturbed flows [vicid or invicid] [8,9,15]. In this paper it is shown that the system admits a global attractor which is also smooth and of finite fractal dimension. The above result is shown to hold for plates without regularizing effects of rotational inertia and without any mechanical dissipation imposed on vertical displacements. This is in contrast with the literature on this topic [15] and references therein. In order to handle highly supercritical nature of the von Karman nonlinearities, new results on "hidden" trace regularity generated by thermal effects are exploited. These lead to asymptotic compensated compactness of trajectories which then allows to use newly developed tools pertaining to quasi stable dynamical systems [8].

Citation: Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141
References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials With Memory. Theory and Applications, Springer, New York, 2012.

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182. doi: 10.1137/S0036141096300823.

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Dedicated to the memory of Pierre Grisvard, Rend. Istit. Mat. Univ. Trieste, 28 (1996), suppl., 1-28 (1997).

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Application 25, North-Holland, Amsterdam, 1992.

[5]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity, J. Differential Equations, 160 (2000), 51-93. doi: 10.1006/jdeq.1999.3656.

[6]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. Ⅱ. Systems & Control: Foundations & Applications, Birkhäuser Boston, Boston, 1993.

[7]

F. Bucci and I. Chueshov, Long time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Systems, 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015.

[9]

I. ChueshovE. DowellI. Lasiecka and J. Webster, Nonlinear elastic plate in a flow of gas: Recent results and conjectures, Appl. Math. Optim., 73 (2016), 475-500. doi: 10.1007/s00245-016-9349-1.

[10]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.

[11]

I. ChueshovI. Lasiecka and J. T. Webster, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Comm. Partial Differential Equations, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolutions with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010.

[14]

I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241. doi: 10.1007/s00245-007-9031-8.

[15]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[16]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013), 1635-1656.

[17]

P. G. Ciarlet and P. Rabier, Les Équations de von Kármán, Springer Verlag, 1980.

[18]

P. G. Ciarlet, Mathematical Elasticity, Vol. II, Theory of Plates. Studies in Mathematics and its Applications, 27. North-Holland, Amsterdam, 1997.

[19]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271. doi: 10.1007/BF00276727.

[20]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, On the uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., North-Holland, Amsterdam, 31 (2002), 329-349.

[21]

P. G. GeredeliI. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J. Differential Equations, 254 (2013), 1193-1229. doi: 10.1016/j.jde.2012.10.016.

[22]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, 1988.

[23]

S. Hansen, Boundary control of a one dimensional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994), 1052-1074. doi: 10.1137/S0363012991222607.

[24]

M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J. Math. Systems Estim. Control, 8 (1998), 11pp.

[25]

V. Isakov, A nonhyperbolic Cauchy problem for $\Box_a \Box_b $ and its applications to elasticity theory, Comm. Pure Appl. Math., 39 (1986), 747-767. doi: 10.1002/cpa.3160390603.

[26]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047.

[27]

H. Koch, Slow decay in linear thermoelasticity, Quart. Appl. Math., 58 (2000), 601-612. doi: 10.1090/qam/1788420.

[28]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 197-216.

[29]

H. Koch and A. Stahel, Global existence of classical solutions to the dynamical von Kármán equations, Math. Methods Appl. Sci., 16 (1993), 581-586. doi: 10.1002/mma.1670160806.

[30]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. ⅷ+156 pp.

[31] O. Ladyzhenskaya, Attractors for Semi-groups and Evolution Equations, Cambridge University Press, 1991.
[32]

J. Lagnese, The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 (1990), 223-267. doi: 10.1007/BF00381235.

[33]

J. E. Lagnese, Uniform boundary stabilization of thermoelastic plates, Control of boundaries and stabilization, (Clermont-Ferrand, 1988), Lecture Notes in Control and Inform. Sci., 125 (1989), 154-167.

[34]

J. E Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. SIAM, Philadelphia, PA, 1989.

[35]

J. E. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Research in Applied Mathematics, 6. Masson, Paris, 1988.

[36]

I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity, Appl. Anal., 68 (1998), 121-145. doi: 10.1080/00036819808840625.

[37]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422. doi: 10.1137/S0363012996301907.

[38]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential and Integral Equations, 6 (1993), 507-553.

[39]

I. Lasiecka, Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 1801-1847. doi: 10.1080/03605309908821483.

[40]

I. LasieckaJ.-L. Lions and R. Triggiani, Nonhomogenous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl.(9), 65 (1986), 149-192.

[41]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.

[42]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74. Cambridge University Press, Cambridge, 2000.

[43]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York-Heidelberg, 1972.

[44]

Z. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q.

[45]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058.

[46]

G. Perla Menzala and F. Travessini De Cezaro, Global existence and uniqueness of weak and regular solutions of shallow shells with thermal effects, Appl. Math. Optim., 74 (2016), 229-271. doi: 10.1007/s00245-015-9313-5.

[47]

A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl.(9), 71 (1992), 455-467.

[48]

I. Ryzhkova, Dynamics of a thermoelastic von Kármán plate in a subsonic gas flow, Z. Angew. Math. Phys., 58 (2007), 246-261. doi: 10.1007/s00033-006-0080-7.

[49]

I. Ryzhkova, Stabilization of von Kármán plate in the presence of thermal effects in a subsonic potential flow of gas, J. Math. Anal. Appl., 294 (2004), 462-481. doi: 10.1016/j.jmaa.2004.02.021.

[50] R. Sakamoto, Hyperbolic Boundary Value Problem, Cambridge University Press, 1982.
[51]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.

[52]

P.-F. Yao, Observability inequalities for shallow shells, SIAM J. Control Optim., 38 (2000), 1729-1756. doi: 10.1137/S0363012999338692.

show all references

References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials With Memory. Theory and Applications, Springer, New York, 2012.

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182. doi: 10.1137/S0036141096300823.

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Dedicated to the memory of Pierre Grisvard, Rend. Istit. Mat. Univ. Trieste, 28 (1996), suppl., 1-28 (1997).

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Application 25, North-Holland, Amsterdam, 1992.

[5]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity, J. Differential Equations, 160 (2000), 51-93. doi: 10.1006/jdeq.1999.3656.

[6]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. Ⅱ. Systems & Control: Foundations & Applications, Birkhäuser Boston, Boston, 1993.

[7]

F. Bucci and I. Chueshov, Long time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Systems, 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015.

[9]

I. ChueshovE. DowellI. Lasiecka and J. Webster, Nonlinear elastic plate in a flow of gas: Recent results and conjectures, Appl. Math. Optim., 73 (2016), 475-500. doi: 10.1007/s00245-016-9349-1.

[10]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.

[11]

I. ChueshovI. Lasiecka and J. T. Webster, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Comm. Partial Differential Equations, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolutions with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010.

[14]

I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241. doi: 10.1007/s00245-007-9031-8.

[15]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[16]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013), 1635-1656.

[17]

P. G. Ciarlet and P. Rabier, Les Équations de von Kármán, Springer Verlag, 1980.

[18]

P. G. Ciarlet, Mathematical Elasticity, Vol. II, Theory of Plates. Studies in Mathematics and its Applications, 27. North-Holland, Amsterdam, 1997.

[19]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271. doi: 10.1007/BF00276727.

[20]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, On the uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., North-Holland, Amsterdam, 31 (2002), 329-349.

[21]

P. G. GeredeliI. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J. Differential Equations, 254 (2013), 1193-1229. doi: 10.1016/j.jde.2012.10.016.

[22]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, 1988.

[23]

S. Hansen, Boundary control of a one dimensional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994), 1052-1074. doi: 10.1137/S0363012991222607.

[24]

M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J. Math. Systems Estim. Control, 8 (1998), 11pp.

[25]

V. Isakov, A nonhyperbolic Cauchy problem for $\Box_a \Box_b $ and its applications to elasticity theory, Comm. Pure Appl. Math., 39 (1986), 747-767. doi: 10.1002/cpa.3160390603.

[26]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047.

[27]

H. Koch, Slow decay in linear thermoelasticity, Quart. Appl. Math., 58 (2000), 601-612. doi: 10.1090/qam/1788420.

[28]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 197-216.

[29]

H. Koch and A. Stahel, Global existence of classical solutions to the dynamical von Kármán equations, Math. Methods Appl. Sci., 16 (1993), 581-586. doi: 10.1002/mma.1670160806.

[30]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. ⅷ+156 pp.

[31] O. Ladyzhenskaya, Attractors for Semi-groups and Evolution Equations, Cambridge University Press, 1991.
[32]

J. Lagnese, The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 (1990), 223-267. doi: 10.1007/BF00381235.

[33]

J. E. Lagnese, Uniform boundary stabilization of thermoelastic plates, Control of boundaries and stabilization, (Clermont-Ferrand, 1988), Lecture Notes in Control and Inform. Sci., 125 (1989), 154-167.

[34]

J. E Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. SIAM, Philadelphia, PA, 1989.

[35]

J. E. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Research in Applied Mathematics, 6. Masson, Paris, 1988.

[36]

I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity, Appl. Anal., 68 (1998), 121-145. doi: 10.1080/00036819808840625.

[37]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998), 1376-1422. doi: 10.1137/S0363012996301907.

[38]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential and Integral Equations, 6 (1993), 507-553.

[39]

I. Lasiecka, Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 1801-1847. doi: 10.1080/03605309908821483.

[40]

I. LasieckaJ.-L. Lions and R. Triggiani, Nonhomogenous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl.(9), 65 (1986), 149-192.

[41]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.

[42]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74. Cambridge University Press, Cambridge, 2000.

[43]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York-Heidelberg, 1972.

[44]

Z. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q.

[45]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058.

[46]

G. Perla Menzala and F. Travessini De Cezaro, Global existence and uniqueness of weak and regular solutions of shallow shells with thermal effects, Appl. Math. Optim., 74 (2016), 229-271. doi: 10.1007/s00245-015-9313-5.

[47]

A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl.(9), 71 (1992), 455-467.

[48]

I. Ryzhkova, Dynamics of a thermoelastic von Kármán plate in a subsonic gas flow, Z. Angew. Math. Phys., 58 (2007), 246-261. doi: 10.1007/s00033-006-0080-7.

[49]

I. Ryzhkova, Stabilization of von Kármán plate in the presence of thermal effects in a subsonic potential flow of gas, J. Math. Anal. Appl., 294 (2004), 462-481. doi: 10.1016/j.jmaa.2004.02.021.

[50] R. Sakamoto, Hyperbolic Boundary Value Problem, Cambridge University Press, 1982.
[51]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.

[52]

P.-F. Yao, Observability inequalities for shallow shells, SIAM J. Control Optim., 38 (2000), 1729-1756. doi: 10.1137/S0363012999338692.

[1]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[2]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[3]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[4]

Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110

[5]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[6]

Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935

[7]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[8]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[9]

F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049

[10]

Hong Lu, Ji Li, Joseph Shackelford, Jeremy Vorenberg, Mingji Zhang. Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1623-1643. doi: 10.3934/dcdsb.2018064

[11]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[12]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397

[13]

Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115

[14]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[15]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[16]

Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489

[17]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[18]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[19]

Irena Lasiecka, Roberto Triggiani. A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 585-598. doi: 10.3934/dcds.1999.5.585

[20]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (104)
  • HTML views (296)
  • Cited by (1)

[Back to Top]