• Previous Article
    Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay
  • DCDS-B Home
  • This Issue
  • Next Article
    Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions
May 2018, 23(3): 1011-1036. doi: 10.3934/dcdsb.2018140

Robustness of time-dependent attractors in H1-norm for nonlocal problems

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/Tarfia s/n, 41012 Sevilla, Spain

To Professor Igor Chueshov, in Memoriam

Received  March 2017 Revised  May 2017 Published  February 2018

Fund Project: Partially funded by the projects MTM2015-63723-P (MINECO/FEDER, EU) and P12-FQM-1492 (Junta de Andalucía)

In this paper, the existence of regular pullback attractors as well as their upper semicontinuous behaviour in H1-norm are analysed for a parameterized family of non-autonomous nonlocal reaction-diffusion equations without uniqueness, improving previous results [Nonlinear Dyn. 84 (2016), 35-50].

Citation: Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140
References:
[1]

A. Andami Ovono, Asymptotic behaviour for a diffusion equation governed by nonlocal interactions, Electron. J. Differential Equations, 134 (2010), 1-16.

[2]

M. Anguiano, Attractors for Nonlinear and Non-Autonomous Parabolic PDEs in Unbounded Domains, PhD-thesis, Universidad de Sevilla, 2011.

[3]

M. AnguianoP. E. Kloeden and T. Lorenz, Asymptotic behaviour of nonlocal reaction-diffusion equations, Nonlinear Anal., 73 (2010), 3044-3057. doi: 10.1016/j.na.2010.06.073.

[4]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346. doi: 10.1088/0951-7715/17/1/018.

[5]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behaviour of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18. doi: 10.1016/j.na.2014.07.011.

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dyn., 84 (2016), 35-50. doi: 10.1007/s11071-015-2200-4.

[7]

T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Time-dependent attractors for nonautonomous nonlocal reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, To appear.

[8]

T. Caraballo and P. E. Kloeden, Non-autonomous attractors for integro-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. doi: 10.3934/dcdss.2009.2.17.

[9]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[10]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.

[11]

N. H. Chang and M. Chipot, Nonlinear nonlocal evolution problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 97 (2003), 423-445.

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.

[13]

M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity, 3 (1999), 65-81. doi: 10.1023/A:1009706118910.

[14]

M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal., 80 (2001), 273-315. doi: 10.1080/00036810108840994.

[15]

M. Chipot and T. Savistka, Nonlocal p-Laplace equations depending on the $L^p$ norm of the gradient, Adv. Differential Equations, 19 (2014), 997-1020.

[16]

M. Chipot and M. Siegwart, On the asymptotic behaviour of some nonlocal mixed boundary value problems, in Nonlinear Analysis and applications: To V. Lakshmikantam on his 80th birthday, Kluwer Acad. Publ., Dordrecht, 1/2 (2003), 431-449.

[17]

M. ChipotV. Valente and G. V. Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova, 110 (2003), 199-220.

[18]

M. Chipot and S. Zheng, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312.

[19]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002.

[20]

I. Chueshov and L. S. Pankratov, Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients, Mat. Fiz. Anal. Geom., 6 (1999), 158-181.

[21]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.

[22]

R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.

[23]

P. Freitas, Nonlocal reaction-diffusion equations, Differential equations with applications to biology (Halifax, NS, 1997), Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 187-204.

[24]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356. doi: 10.1016/j.jde.2012.01.010.

[25]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053. doi: 10.3934/cpaa.2009.8.2037.

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.

[27]

A. V. KapustyanV. S. Melnik and J. Valero, Attractors of multivalued dynamical processes generated by phase-field equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1969-1983. doi: 10.1142/S0218127403007801.

[28]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. doi: 10.1142/S0219493703000632.

[29]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, RI, 2011.

[30]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[31]

P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280. doi: 10.1016/S0167-6911(97)00107-2.

[32] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
[33]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires, Dunod, Paris, 1969.

[34]

P. Marín-Rubio, Attractors for parametric delay differential equations without uniqueness and their upper semicontinuous behaviour, Nonlinear Anal., 68 (2008), 3166-3174. doi: 10.1016/j.na.2007.03.011.

[35]

P. Marín-RubioG. Planas and J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, J. Differential Equations, 246 (2009), 4632-4652. doi: 10.1016/j.jde.2009.01.021.

[36]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[38]

G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 263-283. doi: 10.1090/S0002-9947-1967-0212314-4.

[39]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189-258. doi: 10.5802/aif.204.

[40]

Z. SzymańskaC. Morales-RodrigoM. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interaction, Math. Models Methods Appl. Sci., 19 (2009), 257-281. doi: 10.1142/S0218202509003425.

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd.ed., Springer, New York, 1997.

[42]

D. Werner, Funktionalanalysis, Springer-Verlag, Berlin, 2005.

show all references

References:
[1]

A. Andami Ovono, Asymptotic behaviour for a diffusion equation governed by nonlocal interactions, Electron. J. Differential Equations, 134 (2010), 1-16.

[2]

M. Anguiano, Attractors for Nonlinear and Non-Autonomous Parabolic PDEs in Unbounded Domains, PhD-thesis, Universidad de Sevilla, 2011.

[3]

M. AnguianoP. E. Kloeden and T. Lorenz, Asymptotic behaviour of nonlocal reaction-diffusion equations, Nonlinear Anal., 73 (2010), 3044-3057. doi: 10.1016/j.na.2010.06.073.

[4]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346. doi: 10.1088/0951-7715/17/1/018.

[5]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behaviour of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18. doi: 10.1016/j.na.2014.07.011.

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dyn., 84 (2016), 35-50. doi: 10.1007/s11071-015-2200-4.

[7]

T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Time-dependent attractors for nonautonomous nonlocal reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, To appear.

[8]

T. Caraballo and P. E. Kloeden, Non-autonomous attractors for integro-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. doi: 10.3934/dcdss.2009.2.17.

[9]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[10]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.

[11]

N. H. Chang and M. Chipot, Nonlinear nonlocal evolution problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 97 (2003), 423-445.

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.

[13]

M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity, 3 (1999), 65-81. doi: 10.1023/A:1009706118910.

[14]

M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal., 80 (2001), 273-315. doi: 10.1080/00036810108840994.

[15]

M. Chipot and T. Savistka, Nonlocal p-Laplace equations depending on the $L^p$ norm of the gradient, Adv. Differential Equations, 19 (2014), 997-1020.

[16]

M. Chipot and M. Siegwart, On the asymptotic behaviour of some nonlocal mixed boundary value problems, in Nonlinear Analysis and applications: To V. Lakshmikantam on his 80th birthday, Kluwer Acad. Publ., Dordrecht, 1/2 (2003), 431-449.

[17]

M. ChipotV. Valente and G. V. Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova, 110 (2003), 199-220.

[18]

M. Chipot and S. Zheng, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312.

[19]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002.

[20]

I. Chueshov and L. S. Pankratov, Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients, Mat. Fiz. Anal. Geom., 6 (1999), 158-181.

[21]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.

[22]

R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.

[23]

P. Freitas, Nonlocal reaction-diffusion equations, Differential equations with applications to biology (Halifax, NS, 1997), Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 21 (1999), 187-204.

[24]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356. doi: 10.1016/j.jde.2012.01.010.

[25]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053. doi: 10.3934/cpaa.2009.8.2037.

[26]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.

[27]

A. V. KapustyanV. S. Melnik and J. Valero, Attractors of multivalued dynamical processes generated by phase-field equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1969-1983. doi: 10.1142/S0218127403007801.

[28]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. doi: 10.1142/S0219493703000632.

[29]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, RI, 2011.

[30]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[31]

P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280. doi: 10.1016/S0167-6911(97)00107-2.

[32] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
[33]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires, Dunod, Paris, 1969.

[34]

P. Marín-Rubio, Attractors for parametric delay differential equations without uniqueness and their upper semicontinuous behaviour, Nonlinear Anal., 68 (2008), 3166-3174. doi: 10.1016/j.na.2007.03.011.

[35]

P. Marín-RubioG. Planas and J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, J. Differential Equations, 246 (2009), 4632-4652. doi: 10.1016/j.jde.2009.01.021.

[36]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[38]

G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 263-283. doi: 10.1090/S0002-9947-1967-0212314-4.

[39]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189-258. doi: 10.5802/aif.204.

[40]

Z. SzymańskaC. Morales-RodrigoM. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interaction, Math. Models Methods Appl. Sci., 19 (2009), 257-281. doi: 10.1142/S0218202509003425.

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd.ed., Springer, New York, 1997.

[42]

D. Werner, Funktionalanalysis, Springer-Verlag, Berlin, 2005.

[1]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[2]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[3]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[4]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[5]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2017214

[6]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[7]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[8]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[9]

Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114

[10]

Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2018217

[11]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[12]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[13]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[14]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[15]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[16]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[17]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[18]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[19]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[20]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

2017 Impact Factor: 0.972

Article outline

[Back to Top]