-
Previous Article
Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources
- DCDS-B Home
- This Issue
-
Next Article
Exponential stability of an incompressible non-Newtonian fluid with delay
Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping
1. | School of Mathematics and Statistics, Xidian University, Xi'an 710126, China |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
3. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
The main objective of this paper is to study the existence of a finite dimensional global attractor for the three dimensional Navier-Stokes equations with nonlinear damping for $r>4.$ Motivated by the idea of [
References:
[1] |
J. M. Ball,
Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.
doi: 10.1007/s003329900037. |
[2] |
D. Bresch and B. Desjardins,
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[3] |
D. Bresch, B. Desjardins and C. K. Lin,
On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499. |
[4] |
X. J. Cai and Q. S. Jiu,
Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.
doi: 10.1016/j.jmaa.2008.01.041. |
[5] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. |
[6] |
A. Cheskidov and C. Foias,
On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.
doi: 10.1016/j.jde.2006.08.021. |
[7] |
A. Cheskidov and S. S. Lu,
Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306.
doi: 10.1016/j.aim.2014.09.005. |
[8] |
B. Q. Dong and Y. Jia,
Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations, Nonlinear Anal. Real World Appl., 30 (2016), 41-58.
doi: 10.1016/j.nonrwa.2015.10.011. |
[9] |
F. Flandoli and B. Schmalfuß,
Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398.
doi: 10.1023/A:1021937715194. |
[10] |
L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, London, 1997. |
[11] |
F. M. Huang and R. H. Pan,
Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.
doi: 10.1007/s00205-002-0234-5. |
[12] |
Y. Jia, X. W. Zhang and B. Q. Dong,
The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736-1747.
doi: 10.1016/j.nonrwa.2010.11.006. |
[13] |
Z. H. Jiang,
Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.
doi: 10.1016/j.na.2012.04.014. |
[14] |
Z. H. Jiang and M. X. Zhu,
The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102.
doi: 10.1002/mma.1540. |
[15] |
A. V. Kapustyan and J. Valero,
Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.
doi: 10.1016/j.jde.2007.06.008. |
[16] |
Q. F. Ma, S. H. Wang and C. K. Zhong,
Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.
doi: 10.1512/iumj.2002.51.2255. |
[17] |
J. Málek and J. Nečas,
A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498-518.
doi: 10.1006/jdeq.1996.0080. |
[18] |
J. Málek and D. Pražák,
Large time behavior via the method of $\ell$-trajectories, J. Differential Equations, 181 (2002), 243-279.
doi: 10.1006/jdeq.2001.4087. |
[19] |
C. Y. Qian,
A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Lett., 57 (2016), 126-131.
doi: 10.1016/j.aml.2016.01.016. |
[20] |
J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. |
[21] |
R. M. S. Rosa,
Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269.
doi: 10.1016/j.jde.2006.03.004. |
[22] |
G. R. Sell,
Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.
doi: 10.1007/BF02218613. |
[23] |
J. Simon,
Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.
|
[24] |
X. L. Song and Y. R. Hou,
Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.
doi: 10.3934/dcds.2011.31.239. |
[25] |
X. L. Song and Y. R. Hou,
Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.
doi: 10.1016/j.jmaa.2014.08.044. |
[26] |
X. L. Song, F. Liang and J. Su,
Exponential attractor for the three dimensional Navier-Stokes equation with nonlinear damping, Journal of Pure and Applied Mathematics: Advances and Applications, 14 (2015), 27-39.
|
[27] |
X. L. Song, F. Liang and J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15pp. |
[28] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, New York, 1977. |
[29] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. |
[30] |
B. You and C. K. Zhong,
Global attractors for p-Laplacian equations with dynamic flux boundary conditions, Adv. Nonlinear Stud., 13 (2013), 391-410.
|
[31] |
Z. J. Zhang, X. L. Wu and M. Lu,
On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.
doi: 10.1016/j.jmaa.2010.11.019. |
[32] |
C. K. Zhong, M. H. Yang and C. Y. Sun,
The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[33] |
Y. Zhou,
Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822-1825.
doi: 10.1016/j.aml.2012.02.029. |
show all references
References:
[1] |
J. M. Ball,
Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.
doi: 10.1007/s003329900037. |
[2] |
D. Bresch and B. Desjardins,
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[3] |
D. Bresch, B. Desjardins and C. K. Lin,
On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499. |
[4] |
X. J. Cai and Q. S. Jiu,
Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.
doi: 10.1016/j.jmaa.2008.01.041. |
[5] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. |
[6] |
A. Cheskidov and C. Foias,
On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.
doi: 10.1016/j.jde.2006.08.021. |
[7] |
A. Cheskidov and S. S. Lu,
Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306.
doi: 10.1016/j.aim.2014.09.005. |
[8] |
B. Q. Dong and Y. Jia,
Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations, Nonlinear Anal. Real World Appl., 30 (2016), 41-58.
doi: 10.1016/j.nonrwa.2015.10.011. |
[9] |
F. Flandoli and B. Schmalfuß,
Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398.
doi: 10.1023/A:1021937715194. |
[10] |
L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, London, 1997. |
[11] |
F. M. Huang and R. H. Pan,
Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.
doi: 10.1007/s00205-002-0234-5. |
[12] |
Y. Jia, X. W. Zhang and B. Q. Dong,
The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping, Nonlinear Anal. Real World Appl., 12 (2011), 1736-1747.
doi: 10.1016/j.nonrwa.2010.11.006. |
[13] |
Z. H. Jiang,
Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.
doi: 10.1016/j.na.2012.04.014. |
[14] |
Z. H. Jiang and M. X. Zhu,
The large time behavior of solutions to 3D Navier-Stokes equations with nonlinear damping, Math. Methods Appl. Sci., 35 (2012), 97-102.
doi: 10.1002/mma.1540. |
[15] |
A. V. Kapustyan and J. Valero,
Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.
doi: 10.1016/j.jde.2007.06.008. |
[16] |
Q. F. Ma, S. H. Wang and C. K. Zhong,
Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.
doi: 10.1512/iumj.2002.51.2255. |
[17] |
J. Málek and J. Nečas,
A finite-dimensional attractor for three-dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498-518.
doi: 10.1006/jdeq.1996.0080. |
[18] |
J. Málek and D. Pražák,
Large time behavior via the method of $\ell$-trajectories, J. Differential Equations, 181 (2002), 243-279.
doi: 10.1006/jdeq.2001.4087. |
[19] |
C. Y. Qian,
A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Lett., 57 (2016), 126-131.
doi: 10.1016/j.aml.2016.01.016. |
[20] |
J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. |
[21] |
R. M. S. Rosa,
Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269.
doi: 10.1016/j.jde.2006.03.004. |
[22] |
G. R. Sell,
Global attractor for the three dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.
doi: 10.1007/BF02218613. |
[23] |
J. Simon,
Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.
|
[24] |
X. L. Song and Y. R. Hou,
Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239-252.
doi: 10.3934/dcds.2011.31.239. |
[25] |
X. L. Song and Y. R. Hou,
Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.
doi: 10.1016/j.jmaa.2014.08.044. |
[26] |
X. L. Song, F. Liang and J. Su,
Exponential attractor for the three dimensional Navier-Stokes equation with nonlinear damping, Journal of Pure and Applied Mathematics: Advances and Applications, 14 (2015), 27-39.
|
[27] |
X. L. Song, F. Liang and J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15pp. |
[28] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, New York, 1977. |
[29] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. |
[30] |
B. You and C. K. Zhong,
Global attractors for p-Laplacian equations with dynamic flux boundary conditions, Adv. Nonlinear Stud., 13 (2013), 391-410.
|
[31] |
Z. J. Zhang, X. L. Wu and M. Lu,
On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.
doi: 10.1016/j.jmaa.2010.11.019. |
[32] |
C. K. Zhong, M. H. Yang and C. Y. Sun,
The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[33] |
Y. Zhou,
Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822-1825.
doi: 10.1016/j.aml.2012.02.029. |
[1] |
V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117 |
[2] |
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95 |
[3] |
Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085 |
[4] |
Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018279 |
[5] |
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611 |
[6] |
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101 |
[7] |
Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239 |
[8] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[9] |
Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185 |
[10] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[11] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[12] |
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991 |
[13] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[14] |
Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067 |
[15] |
Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609 |
[16] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[17] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[18] |
Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497 |
[19] |
Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052 |
[20] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
2017 Impact Factor: 0.972
Tools
Metrics
Other articles
by authors
[Back to Top]