• Previous Article
    Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate
  • DCDS-B Home
  • This Issue
  • Next Article
    Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources
December 2018, 23(10): 4243-4254. doi: 10.3934/dcdsb.2018135

Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

* Corresponding author: Juntang Ding

Received  September 2017 Published  April 2018

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 61473180)

In this paper, we consider a quasilinear reaction diffusion equation with Neumann boundary conditions in a bounded domain. Basing on Sobolev inequality and differential inequality technique, we obtain upper and lower bounds for the blow-up time of the solution. An example is also given to illustrate the abstract results obtained of this paper.

Citation: Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135
References:
[1]

K. Baghaei and M. Hesaaraki, Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions, Math. Methods Appl. Sci., 38 (2015), 527-536. doi: 10.1002/mma.3085.

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9.

[3]

J. T. Ding, Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions, Comput. Math. Appl., 65 (2013), 1808-1822. doi: 10.1016/j.camwa.2013.03.013.

[4]

J. T. Ding and H. J. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 433 (2016), 1718-1735. doi: 10.1016/j.jmaa.2015.08.046.

[5]

J. T. Ding and H. J. Hu, Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions, Appl. Anal., 96 (2016), 549-562. doi: 10.1080/00036811.2016.1143933.

[6]

J. T. Ding and X. H. Shen, Blow-up in p-Laplacian heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 67 (2016), Art. 125, 18 pp.

[7]

C. Enache, Blow-up, global existence and exponential decay estimates for a class of quasilinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 2864-2874. doi: 10.1016/j.na.2007.08.063.

[8]

C. Enache, Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasgow Math. J., 53 (2011), 569-575. doi: 10.1017/S0017089511000139.

[9]

L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.

[10]

Z. B. Fang and L. W. Ma, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. RWA, 32 (2016), 338-354. doi: 10.1016/j.nonrwa.2016.05.005.

[11]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 2018, Springer, Heidelberg, 2011.

[12]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary, J. Math. Anal. Appl., 385 (2012), 1005-1014. doi: 10.1016/j.jmaa.2011.07.018.

[13]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value. Prob., 2014 (2014), 1-14.

[14]

M. Marras and S. Vernier-Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Contin. Dyn. Syst., (2013), 535-544.

[15]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Methods Appl. Sci., 39 (2016), 2787-2798. doi: 10.1002/mma.3728.

[16]

M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69 (2016), 687-696.

[17]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in paraboblic problems under Neumann conditions, Appl. Anal., 85 (2006), 1301-1311. doi: 10.1080/00036810600915730.

[18]

L. E. Payne and P. W. Schaefer, Bounds for the blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Section A, 139 (2009), 1289-1296. doi: 10.1017/S0308210508000802.

[19]

X. F. Song and X. S. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput., 236 (2014), 78-92. doi: 10.1016/j.amc.2014.03.023.

[20]

R. P. Sperb, Maximum Principles and Their Applications, Academic Press, New York, 1981.

show all references

References:
[1]

K. Baghaei and M. Hesaaraki, Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions, Math. Methods Appl. Sci., 38 (2015), 527-536. doi: 10.1002/mma.3085.

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9.

[3]

J. T. Ding, Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions, Comput. Math. Appl., 65 (2013), 1808-1822. doi: 10.1016/j.camwa.2013.03.013.

[4]

J. T. Ding and H. J. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 433 (2016), 1718-1735. doi: 10.1016/j.jmaa.2015.08.046.

[5]

J. T. Ding and H. J. Hu, Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions, Appl. Anal., 96 (2016), 549-562. doi: 10.1080/00036811.2016.1143933.

[6]

J. T. Ding and X. H. Shen, Blow-up in p-Laplacian heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 67 (2016), Art. 125, 18 pp.

[7]

C. Enache, Blow-up, global existence and exponential decay estimates for a class of quasilinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 2864-2874. doi: 10.1016/j.na.2007.08.063.

[8]

C. Enache, Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasgow Math. J., 53 (2011), 569-575. doi: 10.1017/S0017089511000139.

[9]

L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.

[10]

Z. B. Fang and L. W. Ma, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. RWA, 32 (2016), 338-354. doi: 10.1016/j.nonrwa.2016.05.005.

[11]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 2018, Springer, Heidelberg, 2011.

[12]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary, J. Math. Anal. Appl., 385 (2012), 1005-1014. doi: 10.1016/j.jmaa.2011.07.018.

[13]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value. Prob., 2014 (2014), 1-14.

[14]

M. Marras and S. Vernier-Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Contin. Dyn. Syst., (2013), 535-544.

[15]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Methods Appl. Sci., 39 (2016), 2787-2798. doi: 10.1002/mma.3728.

[16]

M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69 (2016), 687-696.

[17]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in paraboblic problems under Neumann conditions, Appl. Anal., 85 (2006), 1301-1311. doi: 10.1080/00036810600915730.

[18]

L. E. Payne and P. W. Schaefer, Bounds for the blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Section A, 139 (2009), 1289-1296. doi: 10.1017/S0308210508000802.

[19]

X. F. Song and X. S. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput., 236 (2014), 78-92. doi: 10.1016/j.amc.2014.03.023.

[20]

R. P. Sperb, Maximum Principles and Their Applications, Academic Press, New York, 1981.

[1]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[2]

Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276

[3]

S. E. Kuznetsov. An upper bound for positive solutions of the equation \Delta u=u^\alpha. Electronic Research Announcements, 2004, 10: 103-112.

[4]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[5]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[6]

Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83

[7]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[8]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[9]

Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4555-4570. doi: 10.3934/dcds.2018199

[10]

Frédéric Vanhove. A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$. Advances in Mathematics of Communications, 2011, 5 (2) : 157-160. doi: 10.3934/amc.2011.5.157

[11]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[12]

Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61

[13]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[14]

Claude Carlet, Brahim Merabet. Asymptotic lower bound on the algebraic immunity of random balanced multi-output Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 197-217. doi: 10.3934/amc.2013.7.197

[15]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[16]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[17]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems & Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[18]

Alireza Khatib, Liliane A. Maia. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2789-2812. doi: 10.3934/cpaa.2018132

[19]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[20]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (92)
  • HTML views (397)
  • Cited by (0)

Other articles
by authors

[Back to Top]