-
Previous Article
Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ)
- DCDS-B Home
- This Issue
-
Next Article
A perturbed fourth order elliptic equation with negative exponent
On the Cauchy problem for the XFEL Schrödinger equation
1. | Department of Mathematics, Northwest Normal University, Lanzhou 730070, China |
2. | School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China |
In this paper, we consider the Cauchy problem for the nonlinear Schrödinger equation with a time-dependent electromagnetic field and a Coulomb potential, which arises as an effective single particle model in X-ray free electron lasers(XFEL). We firstly show the local and global well-posedness for the Cauchy problem under the assumption that the magnetic potential is unbounded and time-dependent, and then obtain the regularity by a fixed point argument.
References:
[1] |
P. Antonelli, A. Athanassoulis, H. Hajaiej and P. Markowich,
On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.
doi: 10.1007/s00205-013-0715-8. |
[2] |
P. Antonelli, A. Athanassoulis, Z. Y. Huang and P. Markowich,
Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.
doi: 10.1137/130927838. |
[3] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[4] |
T. Cazenave and M. J. Esteban,
On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.
doi: 10.1016/j.jde.2003.12.002. |
[5] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. |
[6] |
T. Cazenave and F. B. Weissler,
The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.
doi: 10.1007/BF01258601. |
[7] |
H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679. |
[8] |
A. De Bouard,
Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.
doi: 10.1016/j.jde.2003.12.002. |
[9] |
B. Feng,
Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.
doi: 10.1016/j.na.2017.02.028. |
[10] |
B. Feng and X. Yuan,
On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.
doi: 10.3934/eect.2015.4.431. |
[11] |
B. Feng and D. Zhao,
Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.
doi: 10.1016/j.jde.2015.10.026. |
[12] |
B. Feng, D. Zhao and C. Sun,
On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.
doi: 10.1016/j.jmaa.2014.03.019. |
[13] |
A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality?
Phys. Rev. Lett., 106 (2011), 105504.
doi: 10.1103/PhysRevLett.106.105504. |
[14] |
T. Kato,
On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.
doi: 10.1016/j.jde.2003.12.002. |
[15] |
L. Michel,
Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.
doi: 10.1080/03605300801891927. |
[16] |
Y. Nakamura and A. Shimomura,
Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.
doi: 10.14492/hokmj/1285766208. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. |
[18] |
C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. |
[19] |
K. Yajima,
Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
doi: 10.1007/BF02820459. |
show all references
References:
[1] |
P. Antonelli, A. Athanassoulis, H. Hajaiej and P. Markowich,
On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.
doi: 10.1007/s00205-013-0715-8. |
[2] |
P. Antonelli, A. Athanassoulis, Z. Y. Huang and P. Markowich,
Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.
doi: 10.1137/130927838. |
[3] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[4] |
T. Cazenave and M. J. Esteban,
On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.
doi: 10.1016/j.jde.2003.12.002. |
[5] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. |
[6] |
T. Cazenave and F. B. Weissler,
The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.
doi: 10.1007/BF01258601. |
[7] |
H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679. |
[8] |
A. De Bouard,
Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.
doi: 10.1016/j.jde.2003.12.002. |
[9] |
B. Feng,
Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.
doi: 10.1016/j.na.2017.02.028. |
[10] |
B. Feng and X. Yuan,
On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.
doi: 10.3934/eect.2015.4.431. |
[11] |
B. Feng and D. Zhao,
Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.
doi: 10.1016/j.jde.2015.10.026. |
[12] |
B. Feng, D. Zhao and C. Sun,
On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.
doi: 10.1016/j.jmaa.2014.03.019. |
[13] |
A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality?
Phys. Rev. Lett., 106 (2011), 105504.
doi: 10.1103/PhysRevLett.106.105504. |
[14] |
T. Kato,
On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.
doi: 10.1016/j.jde.2003.12.002. |
[15] |
L. Michel,
Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.
doi: 10.1080/03605300801891927. |
[16] |
Y. Nakamura and A. Shimomura,
Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.
doi: 10.14492/hokmj/1285766208. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. |
[18] |
C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. |
[19] |
K. Yajima,
Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
doi: 10.1007/BF02820459. |
[1] |
Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705 |
[2] |
Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 |
[3] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[4] |
Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240 |
[5] |
Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053 |
[6] |
Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141 |
[7] |
Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969 |
[8] |
Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 |
[9] |
Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911 |
[10] |
P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253 |
[11] |
María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201 |
[12] |
Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041 |
[13] |
Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307 |
[14] |
G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1 |
[15] |
Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011 |
[16] |
Wen-Hung Wu, Yunqiang Yin, Wen-Hsiang Wu, Chin-Chia Wu, Peng-Hsiang Hsu. A time-dependent scheduling problem to minimize the sum of the total weighted tardiness among two agents. Journal of Industrial & Management Optimization, 2014, 10 (2) : 591-611. doi: 10.3934/jimo.2014.10.591 |
[17] |
Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143 |
[18] |
Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068 |
[19] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015 |
[20] |
Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035 |
2017 Impact Factor: 0.972
Tools
Metrics
Other articles
by authors
[Back to Top]